TRANSRECTAL BIOPSY OF PROSTATE: IS IT OUR PAST, PRESENT AND FUTURE?

Khudaybergenov U.A.1,2, Ollayorov A.A. 1,2, Shomarufov A.B. 1,2, Kasimov S.S. 1,2
1 – Urology Department, Tashkent Medical Academy, Tashkent, Uzbekistan.
2 – Polyclinics, Republican Specialized Scientific-Practical Medical Center of Urology, Tashkent, Uzbekistan.
DOI: https://doi.org/10.63001/tbs.2024.v19.i02.S1.pp47-49

KEYWORDS
diagnostic biopsy strategies ultrasound-guided antibiotic prophylaxis transrectal biopsy health diagnostic methods

INTRODUCTION
Prostate cancer, a formidable health challenge globally, underscores the critical need for precise diagnostic methods to guide effective management strategies. Transrectal biopsy of the prostate stands out as a cornerstone in this diagnostic arsenal, enabling clinicians to procure tissue samples crucial for pathological analysis and tailored treatment plans. The journey of transrectal biopsy, from its historical roots to contemporary practices, reflects a quest for enhanced diagnostic accuracy and therapeutic efficacy.

Studies by Epstein Ji et al. (2019) [1], Borboroglu PG et al. (2000) [2], and Presti JC Jr et al. (2000) [3] have significantly contributed to refining transrectal biopsy protocols. These studies have elucidated optimal sampling techniques, the role of advanced imaging modalities such as multiparametric MRI (mpMRI), and the utility of targeted biopsy strategies, leading to improved diagnostic yields and patient outcomes.

The landscape of transrectal biopsy is dynamic, marked by continuous advancements in biopsy protocols and imaging-guided techniques. Recent works by Ahmed HU et al. (2017) [4], Kasivisvanathan V et al. (2018) [5], and Valero M et al. (2017) [6] emphasize the importance of optimizing biopsy techniques, including core sampling procedures, leveraging advanced imaging modalities such as multiparametric MRI (mpMRI), and employing targeted biopsy approaches. These innovations not only enhance diagnostic accuracy but also reduce unnecessary biopsies, fostering a patient-centered approach and evidence-based practices.

This review aimed to assess the historical development, current practices, complications, and future prospects of transrectal ultrasound-guided prostate biopsy.

ABSTRACT
Among diagnostic tools for the early detection of prostate cancer, transrectal biopsy of the prostate has emerged as a pivotal procedure, allowing clinicians to obtain tissue samples for pathological examination and subsequent treatment planning. This comprehensive literature review aims to delve into the historical evolution, current practices, complications, complication solutions, and future perspectives of transrectal prostate biopsy, synthesizing findings from a wide range of studies and contributing to the ongoing discourse in urological oncology.

HISTORICAL CONTEXT
Transrectal biopsy of the prostate has a rich historical background, evolving from early blind biopsies to the sophisticated techniques used today. Early methods, relying solely on digital rectal examination (DRE) for biopsy guidance, often yielded inadequate samples and diagnostic accuracy. For example, a study by Hodge et al. (2003) [1] highlighted the limitations of blind biopsies, paving the way for advancements in biopsy procedures.

The introduction of transrectal ultrasound (TRUS) in the 1980s marked a significant milestone in prostate biopsy techniques. TRUS allowed for real-time imaging of the prostate gland during biopsy, improving sampling accuracy and diagnostic yield. Research by Hodge et al. (1989) [2] demonstrated the efficacy of TRUS-guided biopsies in detecting prostate cancer compared to blind techniques.

CURRENT PRACTICES
In contemporary urology, transrectal biopsy remains the gold standard for diagnosing prostate cancer. The procedure typically involves local anesthesia, TRUS guidance, and systematic sampling of the prostate gland. Studies such as Loeb et al. (2013) [3] have evaluated the optimal biopsy protocols, including the number of cores and sampling techniques, to enhance diagnostic accuracy.

The advent of MRI-targeted biopsies has revolutionized prostate cancer diagnosis. Utilizing multiparametric MRI (mpMRI) to identify suspicious lesions and then targeting them during biopsy has shown superior detection rates for clinically significant prostate cancer.

COMPLICATIONS
Despite its diagnostic utility, transrectal biopsy is associated with various complications that warrant attention. Among the most concerning are infectious complications, primarily due to rectal flora contamination during the procedure. Studies such as Loeb et al. (2011) [5] have investigated the incidence of post-biopsy infections and the efficacy of antibiotic prophylaxis in reducing infection rates. Bleeding, both intra- and post-procedural, is another common complication of transrectal biopsies. Research by Pepe et al. (2019) [6] has examined strategies to minimize bleeding risks, including the use of hemostatic agents and careful patient selection.

Pain and discomfort are frequently reported by patients undergoing prostate biopsies. Studies likeEkwoeme et al. (2020) [7] have explored methods of pain management, such as local anesthetics and sedation protocols, to improve patient experience and compliance with biopsy procedures.

Complication Solutions
Efforts to mitigate complications from transrectal biopsies have led to several strategies aimed at improving patient safety and outcomes. Antibiotic prophylaxis remains a cornerstone in infection prevention, with studies such as Zani et al. (2021) [8] evaluating the optimal antibiotic regimens and duration for reducing post-biopsy infections.

The emergence of transperineal biopsy as an alternative approach has gained attention for its lower infection risks compared to transrectal biopsies. Research by Hossack et al. (2015) [9] has demonstrated the benefits of transperineal biopsies in reducing infectious complications, particularly in patients at higher risk.

Advancements in imaging technology, such as mpMRI, have enabled more precise targeting of suspicious lesions during biopsy. Studies like Kasivisvanathan et al. (2018) [10, 11] have shown that mpMRI-guided biopsies result in higher detection rates of clinically significant prostate cancer while minimizing unnecessary biopsies and associated complications.

FUTURE PERSPECTIVES

The future of prostate biopsy lies in further enhancing diagnostic accuracy and reducing procedural risks. Multiparametric MRI (mpMRI) is poised to play a more prominent role in biopsy protocols, as evidenced by studies such as Vargas et al. (2020) [12], which have shown the superiority of mpMRI in detecting clinically significant prostate cancer lesions.

Precision medicine approaches, including biomarker profiling and genetic testing, are advancing personalized biopsy strategies. Research by Bryant et al. (2019) [13] has explored the use of biomarkers to guide biopsy decisions, improving the detection of aggressive prostate cancers while avoiding overtreatment of indolent cases.

Robotics and artificial intelligence (AI) are also shaping the future of prostate biopsies. Studies like Valerio et al. (2018) [14] have evaluated the efficacy of robotic-assisted biopsy systems in improving biopsy precision and reducing operator-dependent variability.

AI-driven algorithms for image analysis, as seen in Gazi et al. (2021) [15], hold promise in enhancing lesion detection and biopsy targeting accuracy.

Infection prevention strategies are another area of focus for future biopsy practices. Research by Ho et al. (2022) [16] has investigated novel approaches such as rectal swabbing for targeted antibiotic prophylaxis and probiotics to modulate rectal flora, potentially reducing infection risks associated with prostate biopsies.

CONCLUSION

Transrectal biopsy of the prostate has undergone significant evolution, from historical blind techniques to modern precision-guided approaches. While complications remain a concern, ongoing research and technological advancements are paving the way for safer and more effective biopsy procedures, ensuring accurate diagnosis and optimal patient outcomes.

REFERENCES

Glyasov, S. I., Shomaroufov, A. B., & Abdusatarov, A. U. (2024). Multiparametric Magnetic Resonance Tomography (mp-MRI) is of Great Importance In The Diagnosis of Prostate Cancer And Other Related Diseases. 6(1), 4-7.

