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ABSTRACT

Background: The delivery of therapies for ocular diseases has a broader range of medications,
drug delivery system. This review aims to critically evaluate the translational potential of nanogel-based ocular drug
Received on: 13-12-2025 | delivery systems (ODD), with a focus on addressing clinical applicability, long-term safety, and
Acceptedon: 05-02-2026 | ¢;4]ability while providing a comparative perspective against existing ocular drug delivery

Published on:
10-02-2026

systems. In this review, we collected data through a search of peer-reviewed articles in the

PubMed database released between 2020 and 2025. Here, we analyzed the common barriers that

affect the ocular drug delivery system, conventional methodologies, nanogel drug delivery
methods, formulation techniques, and therapeutic methods of nanogel. We have observed that
the ODD nanogels have an increased penetration rate, superior precorneal retention, and
controlled drug delivery of anterior and posterior segment ailments. Other modern methods,
such as stimuli-responsive formulations, hybrid nanogel nanoparticle assemblies, and
bioadhesive surface modification, have demonstrated potential in enhancing therapeutic
targeting and stability. Nevertheless, issues with long-term safety validation, batch-to-batch
reproducibility, and compliance with regulatory standards remain. The effectiveness, safety, and
clinical relevance of nanogel-based ocular therapeutics have high potential in changing the face

of ocular therapeutics.

1. Introduction

The human ocular system features a retinopathy macular edema (DME),

complex anatomical  structure  and proliferative  vitreoretinopathy  (PVR),

physiological barriers that limit the delivery posterior uveitis, and cytomegalovirus
and penetration of drugs. Some common (CMV) (1). The conventional ophthalmic

ocular maladies that affect the anterior system of drug delivery to the eye is

segment of the eye include dry eye

syndrome, glaucoma, allergic

conjunctivitis, anterior  uveitis, and
cataracts. Likewise, the posterior part of the
eye develops age-related degeneration of
the macula, or amyloid degeneration

macular degeneration (AMD), diabetic

commonly done with the traditional forms
of dosage that include solutions (62.4%),
suspensions  (8.7%), and ointments
(17.4%), among which approximately 90
percent of commercial ophthalmic
preparations are done. Topical medication

of the eye in the form of gel or drops
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contributes 90% of the ocular drug delivery
system, as it can be easily applied by
patients, but it exhibits poor ocular
bioavailability (<5%) because of the
lacrimal secretions that contribute to low
retention times and reduced permeability
across the corneal epithelium (2). The
normal eye, with a minimum of 709 pL of
tears per minute, is associated with a
turnover rate of 0.522 pL/min. Moreover,
the topical absorption of the drug is
influenced by the blood flow in the
conjunctiva. A combination of all the
barriers leads to a loss of the drug of
approximately 95 percent when applied
topically. The remaining part of the drug is
exposed to the corneal epithelial barrier

(3.4).

Recent advancements in ODD systems
have developed a new solution integrating
nanotechnology with ocular drug delivery.
Nanoparticles are sized between 1 and 100
nanometers, a size that is significantly
smaller than that of the cells of the ocular
barriers. Due to their size, nanoparticles
have the potential to get into the target
intrinsic areas of the eye where the drugs
can be absorbed (5). Such drug delivery
systems tend to show enhanced
pharmacokinetic characteristics and can be
personalized to release the therapeutic
agent in a controlled way, raising safety and

effectiveness. Indicatively, nanoparticles

21(1) 965-997, 2026
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can be incorporated into the hydrogel
matrix to attain a greater retention time,
better resistance to initial degradation, and
controlled release of the therapeutic agent,
thereby overcoming several of the
difficulties that ocular drug delivery implies
(6-8). Hydrogel-based systems are one of
the examples of the development of such a
direction. Advancements in the use of
effective ocular drug delivery systems will
require a detailed view of the ocular barriers
and influencing factors on drug permeation.
In order to enhance the contact with
biological barriers, researchers have studied
various methods of controlling the
physicochemical characteristics of
nanoparticles, such as surface charge,
particle size, and shape, which can
determine the efficacy of drug delivery (9—
11). The use of certain ligands capable of
binding receptors on the target cells or
tissues has also proven beneficial in
actively targeting drug delivery systems to
the preferred site of action (12,13). To
enhance these barriers, strategies that are
aimed at increasing permeability and
retention through active targeting of certain
sites, surface charge regulation, and
physical and chemical modification of
nanocarriers are required. Targeting
molecules can be proteins or aptamers that
identify targets and can be used in precise

and sensitive delivery of the drug, with
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promising research results (14,15). The
current comprehensive literature review
aims to critically evaluate the translational
potential of nanogel-based ocular drug
delivery with focus on

systems, a

2.
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addressing clinical applicability, long-term
safety, scalability, patient compliance, and
regulatory challenges, while providing a
comparative perspective against existing

ocular drug delivery systems.

Anatomical structure of the ocular system

The human eye can be broadly segregated into two parts: the anterior (front of the eye) and the

posterior (in the eye) parts of the eye. The anterior part of the eye includes the cornea,

conjunctiva, iris, ciliary body, crystalline lens, and aqueous humor, while the posterior part

includes the sclera, choroid, retina, and vitreous (Figure 1) (16).

Ciliary muscle

Cornea

Iris

Pupil

Lens-

—— Anterior segments «———

\

Sclera

W

Choroid
I/}‘
\\ , Fovea
‘\)> s _—Optic disk
|

7~

X

Vitreous humor

Optic nerve
and retinal
vessels

Retina

———» Posterior segments «———

Figure 1: Anatomy of the Eye

Scholars classify the cornea physiologically
into five layers: the epithelium, Bowman’s
membrane, stroma, Descemet’s membrane,

and inner endothelium (17).

The conjunctiva is a thin, translucent,
permeable, vascularized mucous membrane
of the first third of the eyeball, more

permeable than the cornea and with a higher

absorption capacity of the drug, with 22
(18).

capillaries

the
the

times the surface Since

conjunctiva  has in
conjunctiva and conjunctival lymphatics,
absorption of drugs is usually futile in the
conjunctiva. The large volumes of drug
waste in the systemic circulation lowering
the bioavailability of the ocular drugs, and

may induce systemic adverse reactions. A
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normal tear volume is 7 pL, but the
conjunctival  sac  can  temporarily
accommodate up to about 30 pL of tear
fluid. The tear fluid turnover is high and
reduces the retention time of the ocular drug

(19).

The retina is a glassy, clear sense organ in
the innermost part of the human eye, made
up of various layers of membranes with an
average of 249 um and complex functions
of photoconversion and transmission (20).
Human visualization of clear images relies
on the lens of the anterior part of the eye and
the cornea of the eye to concentrate the light
of any object on the retina of the eye at the
back part. The transparency of the lens is
lost, which causes destruction of vision

(21-23).

21(1) 965-997, 2026

www.thebioscan.com

3. Structural Barriers of the Ocular

System

The physical and chemical nature of drugs
entering the cornea is defined by the
hydrophobicity and hydrophilicity of the
sandwich structure of the cornea, which
necessitates that the large distribution
coefficient of the drugs be in both the water
phase and the oil phase. While applying, the
drug can be influenced by various dynamic
or static hurdles found in the tissues,
including the tear film barrier, cornea
barrier, vitreal barrier, conjunctiva barrier,
blood-aqueous barrier, and blood-retina
barrier (BRB) (24-26). Figure 2 illustrates
the structural barrier of the ODD system.

Blood aqueous

Conjunctival Blood retinal
Barrier barrier
Delivery
barrier in
ocular system

Tear film

Vitreal barrier

barrier

Corneal barrier

Figure 2: Structural barriers of the eye
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3.1. Tear Film Barrier

The  primary  barrier to  topical
administration of drugs is the tear film.
Precorneal volume is low, and the
maximum amount of eye drops that could
be held in the conjunctival sac is about 30
pL. Topical administration of eye drops
(25-50 uL) showed that only approximately
10 puL of the drug would be left after the
blink reflex and nasolacrimal duct drainage
(27). The tear film is comprised of an
external lipid layer, a mid-aqueous layer,
and an inner mucin layer. Hydrophilic and
hydrophobic drugs were limited by the lipid
and aqueous layers, respectively. The inner
tear layer has a negatively charged mucin
layer that prevents the entry of negatively
charged drugs or carriers into the cornea

(28).
3.2. Corneal Barrier

The secondary barrier that prevents the
penetration of exogenous substances into
the eye is the cornea. It is composed of five
layers of collagenous fibers, which include
the epithelium, Bowman's membrane,

stroma, Descemet membrane, and

endothelium. The epithelium, stroma, and
endothelium are the layers that create
significant ~ barriers against drug
penetration. Six to eight layers of cells
the

compose surface of the corneal

epithelium with an overall thickness of

21(1) 965-997, 2026
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about 40-50 mm. As the epithelium cell
matures, it becomes flattened and later
develops tight intercellular junctions,
permitting the passage of hydrophilic drugs
(29). A layer of hydrophilic gel next to the
corneal epithelium is about 450-500 pum
thick, which is 90%

and which poses

of the corneal
thickness, serious
advantages to lipophilic drugs with regard
to solubility and partition coefficients (30).
Similarly, there are tight junctions on the
endothelium. The endothelium is less
impermeable than the epithelium and less
resistant to paracellular passage of drugs
due to its thinness in cells (13 um). The
particular sandwich arrangement of corneal
tissue renders it an exclusive barrier to the
vast majority of lipophilic and hydrophilic
drugs (31).

3.3. Conjunctival Barrier

The conjunctiva is a thin, translucent,
blood-filled mucous membrane that can be
split into three parts, including the bulbar
conjunctiva, conjunctival vault, and lid
conjunctiva. The conjunctiva, in contrast to
the cornea, is regarded as a significant
pathway of noncorneal drug delivery (e.g.,
macromolecular nanoparticles) due to its
and

high vascularity, cells,

cupping
transdifferentiation potential (32). The gap

between the epithelial cells of the

conjunctiva is larger than that of the corneal
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epithelial cells, and thus, hydrophilic
macromolecules are more likely to
penetrate the conjunctiva rather than the
cornea. Because of the presence of
conjunctival  capillaries and lymph,
however, ocular administration of drugs is
likely to result in a large loss of the
circulation of the body, thus decreasing the

total ocular availability (17).
3.4. Blood-aqueous barrier

The epithelial tissue of endothelial cells and
the non-pigmented ciliary body of the iris
vasculature were considered as the blood-
aqueous barrier of the eye, which prevents
the non-specific entry of various solutes in

the intraocular environment (33).
3.5. Blood-retinal barrier

The blood-retinal barrier (BRB) is the most
important barrier in the posterior ocular
region. The external region of the BRB is
made of close junctions between retinal
pigment epithelial cells, while the internal
region is made of tight junctions between
retinal capillary endothelial cells. Thus
BRB framework prevents the entry of

21(1) 965-997, 2026
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substances into the retina, which also limits
the penetration of medication molecules'

ability to enter the intraocular region (34).

4. Conventional medication

techniques for the ODD system

The topical delivery route maintains its
position as the leading method for drug
administration through the eyes because it
offers convenient administration and
patient adherence. The therapeutic benefits
of topical delivery face multiple primary
restrictions that reduce drug effectiveness.
At present, we have identified more than
500 ocular diseases. Some of them include
conjunctivitis, cataracts, glaucoma, age-
related macular degeneration (AMD),
diabetic retinopathy, endophthalmitis, and
ocular tumors (35). The prevalence graph of
these conditions grows rapidly due to the
long-term exposure of the eye and aging
conditions (36). This results in the
immediate development of effective
medication for the ODD system. Some
conventional medication techniques for
ODD are shown in Figure 3. The image is

created in https://BioRender.com.
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Figure 3: Conventional medication techniques for ODD

4.1. Topical Administration

The most common and widely used
medication for the ocular disease is topical
administration. Compared to the systemic
method, 90 percent of people prefer the
topical medication, as it is non-invasive,
easy to apply, and has minimal adverse
other

events compared to

(37). However,

systemic
techniques the ocular
barrier, such as the tear film barrier, corneal
barrier, and anatomical structure, limits the
bioavailability of the drug delivery system.
To overcome this limitation, we should
improve two

strategies: improve the

972

permeability of the cornea and increase the

retention time of the pre-corneal drug (38).
4.2. Subconjunctival administration

This is a minimally invasive and effective

technique compared to topical
administration. Here, the drug is delivered
to the anterior or posterior chamber of the
eye. This method overcomes the blood-
aqueous and corneal barriers. It avoids the
potential adverse events and prevents the
breakdown of some

initial systemic

medications. However, the drug loss occurs
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in subconjunctival mode due to the drainage
of blood and lymphatic fluids through the

conjunctiva (39).
4.3. Transscleral administration

This is another minimally invasive method;
here, the molecules of size up to 70 kDa can
penetrate to the sclera, and a 1 kDa
molecule can cross the cornea. But the
bioavailability of this process is lower than
direct intravitreal ROA due to the dynamic

barrier (40).
4.4. Intracameral administration

This is a minimally invasive method where
the drug is injected into the anterior
chamber of the eye. This method prevents
the  limitation  of  subconjunctival
administration by preventing the cornea,
conjunctiva, and blood-aqueous barriers.
This technique is widely wused in

prophylactic procedures of eye surgeries as

anesthetics and antibiotic drugs.

However, this method cannot deliver the
drug to the posterior region. Also, the drug
in the anterior region should be prepared
with appropriate concentration and doses,
without preservation. If the process is not
done correctly, it may cause endothelial
corneal toxicity and toxic anterior

syndrome (41).
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4.5. Intravitreal injection

Intravitreal injection is used to treat the
posterior region of the eye. But frequent
injection of the drug is required to achieve
a good effect. This results in the eyeball
infection, elevated IOP, and other retinal
problems. To overcome the -effects,
researchers developed nanoparticle-based
implants, hydrogels, and other minimally
invasive techniques that are under the

preclinical development stage (42).
4.6. Systemic administration

This method includes oral dose-based
medication, used as preferred antibodies to
treat conditions such as wuveitis and
endophthalmitis. Frequent administration
of the drug is required to achieve the desired
level of therapeutic effect. This may cause
systemic adverse events in the patients.
Hence, it's not an ideal method for ocular

treatment (43).

Multiple conventional techniques, such as
corneal prodrugs, mucus osmotic particles,
enhancers, collagen corneal shields, and
therapeutic contact lenses, were developed
in the ocular drug delivery system, yet it has
several limitations. In the current era,
nanoparticle-based ODD systems have
opened up a new perception in the ocular
therapeutic system in liquid, gel, and semi-

solid formulations of drugs(44).
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5. Nanoparticles in Ocular Drug

Delivery Systems

5.1. Colloidal nanocarriers

To penetrate the drug molecule in the eye,
micelles, liposomes, dendrimers, and
dendrimers are used as the colloidal
nanocarriers. The drug retention time was
increased by mucus-penetrating particles
that make contact with the corneal
epithelium.  Liposome-based  mucus-
penetrating particles, which a colloidal
nanovehicles developed by surrounding an
internal aqueous core with a typical size
from 10 nm to several micrometers with
lipid bilayers (45). By transcellular
mechanism, the lipophilic drugs easily

penetrate into the lipophilic cornea (46).
5.2. Liposomes

Liposomes, which are coated by
mucoadhesive  chitosan, allow the
medicament to pass through tight junctions
and increase the precorneal retention time,
making the penetration of topical
administration of hydrophilic drugs more
feasible. The main drawbacks are decreased
bioavailability, stability issues on the mucin
surface (the half-life was short due to the

tear turnover), and the solubility of drugs is

also very poor (47).
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5.3. Nanomicelles

Nanomicelles are the colloidal structures
composed of amphiphilic
molecules/monomers, which can self-
assemble in an aqueous solution. They
consist of two main components: a
hydrophobic inner/core, which stores and
interacts with hydrophobic drugs/agents,
and a hydrophilic tail that is lengthy and
aids the complex in enclosing the aqueous
phase. The peculiar arrangement of
micelles prevents the direct contact of
topically applied hydrophobic
pharmaceuticals at the hydrophilic part of

the cornea and stroma (48).

5.4. Hydrogel-based therapeutic

contact lenses

Hydrogels used in Therapeutic contact
lenses provide controlled-release drugs for
an extended time with minimal toxicity and
maximum therapeutic window. Due to the
hydrophilic polymer chains present in
hydrogel, it provides a 3d structure and
keeps the drug insoluble (49). Bimatoprost
(50), latanoprost (51), tafluprost (52), and
travoprost (53) appear to have very
comparable efficacy regarding IOP
reduction in patients with primary open-

angle glaucoma.

Microsphere  eye  drops  delivering

brimonidine for glaucoma maintained the
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intraocular pressure in an in vivo model; it
mentioned the efficacy of treatment
magnified with higher baseline pressure
(54). The main challenges for using

hydrogel-based therapeutic contact lenses
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are toxicity to the cornea, infection risks,
and diffusion of oxygen. Table 1
summarizes the advantages of nanogel over

conventional delivery systems.

Table 1: Advantages of nanogel over conventional delivery systems

and fusion of drugs

Formulation Limitation Nanogel Advantage Reference
(Conventional)
Liposomes Poor stability, leakage, | Nanogels have better structural (55)

integrity and reduced leakage

Solid Lipid | Drug expulsion during
Nanoparticles | long storage due to

polymeric transition

Nanogels allow stable (56)
encapsulation and better long-

term storage

Polymeric Burst release, particle

Nanoparticles | aggregation, and toxicity

Nanogels enable controlled (57)
release and better colloidal

stability

Dendrimer Blurred vision and

potential toxicity

Nanogels are more (58)
biocompatible and less

irritating to ocular tissues

Stimuli- Limited to smaller
Responsive Gel | molecular weight drugs,
poor stability, and

temperature sensitivity

Nanogels can encapsulate (59)
macromolecules and offer
responsive release with better

stability.

Inorganic Poor stability and

Nanoparticles | bioavailability

Nanogels offer improved (60)
solubility and biocompatibility

Conventional Rapid drug clearance, low

Nanogels offer (61)

hydrophobic drug delivery

limitations

Eye Drops bioavailability, frequent | mucoadhesiveness, sustained
dosing release, and enhanced corneal
permeability
Conventional Blurred vision, | Nanogels are transparent and (62)
Gels discomfort, and | suitable for hydrophobic and

hydrophilic drugs
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6. Formulation Techniques of Ocular Nanogels

6.1. Precipitation polymerization

Precipitation starts, and polymerization
takes place in the homogeneous solution.
and polymerization begins with the
formation of a homogeneous mixture.
Crosslinking polymer chains are needed to
isolate particles due to the resulting
polymers being soluble in the medium but
not swellable. When the polymerization
reaction increases, the polymer chain's
length also increases. The developed phase
is separated to produce polymer colloidal
particles, and subsequently, Nanogel is
formed after the polymer chain reaches a

specific length (63). Synthesis of poly(N-

NIPMAM BIS

Sodium dodecyl sulfate

isopropylmethacrylamide) (p(NIPMAM))
nanogels in vitro model to determine the
effect of stiffness on cross-translocation in
an of the blood-brain barrier (BBB) (64).
The results showed that the stiffness of a
nanogel 1s important in biological
interactions. The softest nanogels (NG1.5
and NGS5) seem more suitable for drug
applications as they have better transcytosis
across the barrier, while the stiffer ones
(such as NGI14) have increased cellular
uptake. These types of nanogels were
shown to be effective in overcoming the

physiological barriers (Figure 4) (65).

Nanogel

Figure 4: Formulation of Precipitation Polymerization Nanogels

6.2. Inverse emulsion polymerization

The method is based on dispersing the
aqueous phase, comprising hydrophilic

monomers and carbon nanomaterials, into a

continuous oil phase, resulting in the
generation of water-in-oil (W/O) droplets

stabilized by surfactants. The Initiation of

976


http://www.thebioscan.com/

!
\5
SHe. .
E Lobcar
A G
3

AN INTERNATIONAL QUARTERLY JOURNAL OF LIFE SCIENCES

polymerization occurs within the limits of
these droplets and results in the formation
of nanogels containing carbon
nanomaterials. Significantly, it has full
control over the size of the nanogels in
addition to enabling efficient incorporation
of carbon-based materials that enhance
further functionalities for biosensing,
bioimaging, and responsive drug delivery
applications (66). The synthesis of pH-
sensitive poly (L-AGA) (N-acryloyl-L-

glutamic acid) nanogels via inverse

L-AGA BIS

Sonication

21(1) 965-997, 2026
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PGPR surfactant

Dispersed aqueous
phase

Miniemulsion
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emulsion polymerization, where dissolving
L-AGA and BIS (N, N'-methylene
bis(acrylamide)) in a salt solution (0.15 M
NaCl) functioning as a dispersed aqueous
phase and stabilizes this in an organic phase
based on cyclohexane and PGPR
(polyglycerol polyricinoleate) surfactant.
The synthesized nanogels (between 280 and
370 nm) have high drug-loading capacity
qualities, which are quite beneficial in the
controlled drug delivery aspect (Figure 5)
(67).

KPS orAIBN

Polymerization, Wash
80°C

Figure 5: Formulation of Inverse emulsion polymerization nanogels

6.3. Microtemplate polymerization

The process of adding monomers along with crosslinkers to microtemplates constitutes

microtemplate polymerization. Free radical polymerization starts through an initiating process.

The hydrogel nanoparticles emerge from the microtemplate during the final step. The method

provides an advantage for generating nanogels of multiple shapes (68). The photolithographic
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microtemplate polymerization technique is a specific kind of microtemplate polymerization in
which a photoinitiator is added along with a monomer and crosslinking agents (Figure 6).

Figure 6: Formulation of microtemplate polymerization nanogels

6.4. Self-assembly and cross-linking

UV light

patterned mask
Glass plate

X
00 o 06 06 00

Glass plate was removed Microparticles rinsed with
after polymerization water

- -

Aqueous methacrylate
hyperbranched (hypg-MA)
polyglycerol

The process by which molecules assemble into thermodynamically stable aggregates through
non-covalent interactions is referred to as self-assembly. Molecular self-assembly is mainly

caused by van der Waals forces, hydrophobic contacts, electrostatic interactions, and hydrogen

Crosslinked by

pH<2 poly(acrylic acid)
crosslinked
I
o
U
Hollow sphere
Nanogels
Micelles
Core—shell
Self - assembly Nanogels

bonding interactions. These interactions may induce water-soluble polymers with particular
structures to self-assemble into nanogels. The nanogel's stability can be significantly advanced
with the methods of chemical and optical crosslinking. By using the disulfide bonds for
crosslinking, the resultant nanogels can respond to the reductive breakdown of certain agents,
such as glutathione in cells. pH-dependent nanogels synthesized from hydroxyethyl cellulose-
graft-poly(acrylic acid) (HEC-graft-PAA) a self-assembled and crosslinked HEC-graft-PAA
nanogels, which offer biomedicine tunable structures and controlled drug release (Figure

7)(69).
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Figure 7: Formulation of self-assembly and cross-linking nanogels

6.5. Reverse micellar method

The reverse micellar method employs the

water-in-oil  dispersion ~ phenomenon,
similar to the inverse miniemulsion method.
A micellar solution with water droplets
dispersed in a continuous oil phase can be
obtained thermodynamically stably by
using an excessive amount of hydrophilic
surfactant. In the size range of about 10-150
nm, the fine nanoparticles within the gel
particles exhibit a characteristic. Cross-

linking agents prove indispensable for

Muscone  Poloxamer Ethanol
407

Homogeneous solution

Evaporative technique

keeping nanoparticles stable, and it is
necessary to have the right amount of oil-
soluble surfactant to produce
thermodynamically stable nanogel particles
(70). Reverse micellar was an efficient
strategy to comprise self-assembled
thermoresponsive nanogels for optimizing
drug solubility and permeability, as well as

retention time for effective ocular drug

delivery (Figure 8).

cold double-distilled
borate buffer (pH 7.09)

Thermoresponsive
nanogels

Figure 8: Formulation of reverse micellar method nanogels

7. Nanogels are potential carriers for ocular drug delivery systems

Ocular disorders comprise numerous
conditions that affect the entire network of
tissues in the eye, starting from the cornea
down to the lens and retina and ending with
the optic nerve. These health conditions
lead to blindness when they receive

improper medical treatment. Three primary

eye conditions include cataracts, which
make the lens appear clouded; glaucoma,
which damages the optic nerve in
conjunction with increased intraocular
pressure; and  age-related  macular
degeneration (AMD), which remains the

main cause of central vision loss in older
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adults (71). The eye faces multiple
significant issues, including uveitis, which
affects the uvea; dry eye syndrome, which
produces irritation from reduced tear
production; retinitis pigmentosa, which
results from inherited retinal degeneration;
diabetic retinopathy, which develops from
diabetic  blood

vessel damage; and

conjunctivitis, which creates inflammation
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Medications  applied  topically  or
systemically along with surgical procedures
blend with new drug delivery systems such
as hydrogels, nanoparticles, nanogels, and
ocular inserts for addressing targeted and
sustained delivery of drugs to the eyes
while overcoming ocular barriers (72).
Table 2 explain the Recent advancements in

ocular Nanogels.

of the conjunctiva between the eyes.

Table 2: Recent advancements in ocular Nanogels

Type of Nanogel Drug Polymer Disease Ref
v-Cyclodextrin-based 2-Hydroxypropyl-y- Ocular (73)
Nanogels Dexamethasone cyclodextrin (HPyCD) | inflammation
Chitin Nanogels Chitosan/p- Chitin Corneal fungal | (74)
glycerophosphat infections (mycotic
e keratitis)
Hyaluronan-Cholesterol Dexamethasone, | Hyaluronan conjugated | Anterior and | (75)
Nanogels Piroxicam, with cholesterol Posterior Segment
Tobramycin, Ocular  Disorders
Diclofenac (Dry Eye, Uveitis,
Sodium Macular Edema,
etc.)
ROS-stimuli-responsive Dexamethasone | B-Cyclodextrin, Corneal (76)
Nanogel Adamantane, Neovascularization
Hyaluronic Acid, | (CNV)
Thioketal
Micelle-Nanogel Ferulic Acid Hyaluronan, e- | Corneal  Wound | (77)
Polylysine, Poloxamer | Healing
Mucoadhesive and | Timolol Poly(N-isopropyl Glaucoma (78)
Responsive Nanogels acrylamide) (pNIPA),
Acrylic Acid (AAc)
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Mucoadhesive Chitosan- | Acetazolamide | Chitosan  crosslinked | Glaucoma (79)
Based Nanogel (ACZ) with Sodium
Tripolyphosphate (TPP)
Chitosan-Alginate (CS-SA) | Timolol Maleate | Chitosan (CS) and | Glaucoma (80)
Nanogel Sodium Alginate (SA)
Zwitterionic Nanogels Levofloxacin Poly(sulfobetaine Ocular infections (81)
methacrylate) (PSBMA)
Polyelectrolyte ~ Complex | Nicotinamide Hyaluronic Acid (HA), | Age-related Ocular | (82)
(PEC) Nanogels Adenine Poly(L-lysine) (PLL) Diseases
Dinucleotide (Glaucoma, Age-
(NAD") related Macular
Degeneration)
Polyvinyl Alcohol (PVA)- | 5-Fluorouracil Polyvinyl Alcohol | Post- (83)
based Composite Nanofiber | (5-FU) (PVA), Fenugreek, | trabeculectomy
Coriander Fibrosis in
Glaucoma
Treatment
Chitin Nanogels (part of a | Fluconazole Chitin, Eudragit RS100, | Fungal  Keratitis | (84)
thermosensitive in situ gel) Eudragit RL100 and
Endophthalmitis

8. Nanogel-based therapeutic drugs for ocular disease

The intraocular tissues retain less than 5%
of the administered medication because
most of it gets lost through protective
barriers (85). Drugs on the ocular surface
remain for a short period, and the cornea
exhibits low drug permeability, resulting in
reduced bioavailability of medications,
particularly those destined for the posterior
eye segment. Advanced drug delivery
systems became necessary because existing

systems fail to maintain drug retention in

the eye while also improving drug
permeability and delivering medications in

controlled amounts.

The utilization of nanogels represents a
promising solution to overcome common
challenges in  conventional topical
pharmaceutical delivery through the eyes.
Nanoparticle-sized three-dimensional

hydrophilic polymeric networks have

mucoadhesive qualities that improve drug
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maintenance on the ocular surface through
their response to both physical stimuli and
ion changes (86). Nanogels penetrate
biological tissue more efficiently because
of their size, while their water content
maintains material compatibility with
biological structures and prevents tissue
irritation. Nanogels function as drug
carriers that encapsulate drugs of both
hydration-resistant and hydration-friendly
natures while controlling their drug release
rates to reduce dosage frequency and boost
treatment adherence. Their ability to create
a depot deposition at application sites
permits drugs to stay longer while
improving  distribution  effectiveness,
particularly for medicines intended for

anterior and posterior ocular regions (87).

Glaucoma develops as an eye disease that
manifests through elevated intraocular
pressure  (IOP).  Medical research
demonstrates that elevated intraocular
pressure and the fluctuations of pressure
levels function as key factors in glaucoma
development and disease progression (88).
The first medical intervention for glaucoma
treatment includes eye drops, which are
applied topically. Most current eye care
procedures function to either reduce
Intraocular pressure levels or maintain its
stability. Various drugs such as B-blockers,

a-agonists, carbonic anhydrase inhibitors,

prostaglandin analogs, and cholinergic

21(1) 965-997, 2026
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drugs are commonly used, but their usage is
restricted by bioavailability issues (89). The
treatment of glaucoma faces two significant
challenges from  patient adherence
alongside medication effectiveness because
of the dose requirements for everyday use.
Timolol maleate (TM) represents one
glaucoma care drug, but medical providers
choose other options since its therapeutic
benefits are imperfect with daily repeated
administration requirements. Systemic side
effects pose major risks to patients when
using TM as a [-blocker agent (90).
Nanocarriers present an alternate drug
delivery solution because they allow
effective long-term drug release from their
ocular  encapsulation  system.  The
encapsulation of TM inside nanocarriers,
including Nanogels, serves as an approach
to extend the therapeutic drug exposure

duration in the eye.

Cataracts stand among the main causes of
blindness worldwide, while surgery
remains the most common treatment
approach. Lens epithelial cells create visual
problems among numerous patients who
undergo surgery through their postoperative
proliferation and cellular spread because
they evolve into fiber-shaped cells and
fibroblast cells (91). Postoperative
complication called posterior capsular

opacification (PCO) forms in 20-40% of

adult cataract patients after surgery but
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lacks tested drugs for clinical treatment.
Post-cataract surgery use of intraocular
lenses implanted into the lens capsule
functions as a preventive measure against
Nanogels made from nanofibers helps to
overcome the Capsular Opacification (CO),
which develops following cataract surgery
because of Epithelial to mesenchymal
transformation (EMT) transitions in lens
epithelial cells (LECs). Nanogels made
from low molecular weight gelators
(LMWGs) which integrated extracellular
matrix (ECM)-derived peptides when
injected into porcine capsular bags. These
peptides IKVAV (isoleucine-lysine-valine-
alanine-valine) and YIGSR (tyrosine-
isoleucine-glycine-serine-arginine) are
both laminin-derived, and RGDS (arginine-
glycine-aspartic acid-serine) and PHSRN
(proline-histidine-serine-arginine-

asparagine) are fibronectin-derived
peptides together with DGEA (aspartic
acid-glycine-glutamic acid-alanine) is a
collagen IV-derived peptide bind integrin-
mediated signaling elements to control LEC

cellular functions.

The multifactorial condition known as dry
eye syndrome (DES), also referred to as dry
keratoconjunctivitis, causes  complex
disorders in the eye. DES causes the
breakdown of tear film maintenance

alongside tears evaporating faster or slower

than needed, because of which eyes become

21(1) 965-997, 2026
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unable to properly lubricate themselves.
Due to dry eye syndrome, patients
experience eye discomfort and tissue
damage, leading to severe vision loss that
disables normal human functioning (92).
Eye drops containing DES need high
dosages and multiple applications per day
because their short residence time in the
precorneal area leads to less than
satisfactory  outcomes. After topical
application on the eye, PAAc creates a
long-lasting lubricating surface that forms
directly on the conjunctiva and cornea. The
substance exhibits resistance at body
temperatures, which causes eye blur and

obstructs the blinking motion (93).

Scientists have developed nanogels to
address dry eye syndrome (DES), which
manifests as an eye condition due to
insufficient tear production and excessive
tear dryness that leads to surface damage.
Nanoscale hydrogel was combined using
poly(acrylic acid) (PAAc) and
polyvinylpyrrolidone (PVP) through green
gamma irradiation into a single-step
synthesis to develop biomimetic tear
substitutes with low viscosity. Gamma
irradiation cross-linked the hydrogels by
forming  stable

nanogels  through

interpolymer complexation, which
occurred through hydrogen bonds and

radiation-induced cross-linking.
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The nanogels spread quickly on the ocular
surface because of their small dimensions
and maintained effective contact through
their interaction with tear film mucin that
delayed drug clearance and cut down the
need for frequent eye drops. PAAc-rich
nanogels with 20 kGy irradiation doses
showed the most potential in improving tear
quantity (measured by Schirmer’s test) and
maintaining tear film stability (measured by
tear break-up time, TBUT), as well as
preserving corneal epithelial health in
albino rabbits with atropine sulfate-induced
dry eye pathology. Nanogel formulations
containing PVP/AAc ratios at 25/75
mol/mol% and 35/65 mol/mol% took only
three days of twice-daily application to
restore tear parameters better than the
commercial tear gel product Vidisic®
needed. The research indicates PAAc/PVP
nanogels represent a patient-friendly
approach to replace conventional artificial

tears for treating DES effectively (94).

Keratitis develops from inflammatory
infections together with microorganisms
and bacterial entities such as Pseudomonas
aeruginosa, Staphylococcus aureus, and
Streptococcus pneumoniae that release
proteins leading to direct or indirect corneal
damage. In situ gels share structural
similarities with nanogels because they
contain  environmentally

responsive

polymers. It underwent a liquid-to-gel
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transformation after eye insertion and
established a viscoelastic form that steadily

delivers medication .

The synthesized nanogels functioned with
10-50 nm particle dimensions and achieved
more than 95% success in capturing CIP.
The in vitro drug release analysis
demonstrated that ciprofloxacin was
delivered slowly over five days, while the
system first dispensed medication rapidly
as a burst and then maintained controlled
drug diffusion. The nanoformulated CIP
achieved a lower minimum inhibitory
concentration value of 4.687 pug/ml against
P. aeruginosa compared to 18.78 pug/ml for
the conventional CIP solution, thus
indicating better antibacterial properties.
The use of CIP-loaded nanogels proved
more effective than CIP solution at
reducing ulcer area in severe keratitis cases
when applied to rabbits. Nanogels proved to
be safe for use despite their lack of damage
to the eyes, which further helped
therapeutic success through their ability to
sustain drug levels at the infected tissue
(95). The study demonstrates that
P(NIPAAm-MAA-VP) nanogels present a
potential substitute to traditional ocular
antibiotic therapies for prolonged localized

bacterial keratitis treatment .
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9. Limitations and future

perspective

The nanogel appears to be a viable
approach to the setting of ocular drug
administration, conferring potential
advantages such as sustained and controlled
release of drugs, increased bioavailability,
and improved patient compliance. The main
challenge in the nanogel-based technology
is the formulation process of the drug,
which is highly influenced by it complex
permeability and bioavailability. We
observed that most of the nanogel based
techniques are preclinical stage, thus
limiting the availability of clinical data.
Future  advancements in  nanogel
technology will mainly focus on the
formulation of multi-stimuli-responsive
nanogels responding to pH, temperature,
enzymes, and oxidative stress. Moreover,
hybrid nanogels, having liposomes or
micelles or any other kind of nanocarrier,
may encapsulate and release drugs, which
would augment the therapeutic
effectiveness. The next vital area of
research will be the choice of suitable
polymers that will minimize toxicity while
having a high payload capacity and, thus,
maximizing safety and biocompatibility.
The use of nanogels to transport genes and
proteins also holds great promise and may

pave the way for therapies targeting

degenerative and hereditary eye diseases.

21(1) 965-997, 2026
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Depending upon future advances, it may be
possible to make greater therapeutic use of
nanogels by employing biosensors to
monitor real-time drug release and
However, for

treatment  response.

commercialization  issues,  regulatory
approval, and long-term safety
considerations to be addressed, it is
mandatory that extensive in vivo and
clinical studies are performed to get clinical

acceptance on a wide scale.

10. Conclusion

In this review, we studied the anatomical
structure of the eye, structural and
functional Dbarriers of ocular disease,
conventional ODD technologies, and how
nanogel methods help to overcome this
method. We analysed that nanogel-based
techniques have high efficacy compared to
the conventional ocular therapeutic
methods, particularly to avoid the drainage
of drugs. This controlled release of drug,
increased viscoelasticity, and
bioavailability nature improved the efficacy
of the drug. Their unique properties, such as
mucoadhesion, high hydration, and
controlled drug release, will help in
overcoming the limitations of classical
ophthalmic formulations. The
effectiveness, safety, and clinical relevance
of nanogel-based ocular therapeutics will

be vastly enhanced with further
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advancements in polymer chemistry and
nanotechnology. Nanogels can truly
revolutionize the treatment of some ocular
diseases  with  further study and
development, eventually improving patient

outcomes and quality of life.
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