

STABILITY-INDICATING RP-HPLC METHOD FOR THE SIMULTANEOUS ESTIMATION OF ANTIRETROVIRAL DRUGS IN BULK AND TABLET FORMULATIONS

SUBHRANSHU PANDA, SIRISHA GORANTLA*

Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India

Corresponding Author: Sirisha Gorantla, Email: sirishagorantla24@gmail.com

DOI: [10.63001/tbs.2026.v21.i01.pp819-828](https://doi.org/10.63001/tbs.2026.v21.i01.pp819-828)

Keywords

Abacavir, Dolutegravir, Lamivudine, RP-HPLC, method validation, stability-indicating, forced degradation, ICH Q2(R1)

Received on:

30-11-2025

Accepted on:

29-12-2025

Published on:

01-02-2026

ABSTRACT

A reliable, validated, and robust RP-HPLC method was established to evaluate Abacavir (ABV), Dolutegravir (DTV), and Lamivudine (LVD) in bulk and fixed-dose combination tablets. Chromatographic separation was achieved on a Sunfire C18 column (250 × 4.6 mm, 5 µm) using a mobile phase of 0.01 N ammonium acetate:acetonitrile (60:40 v/v) at a flow rate of 1.0 mL/min, with detection at 257 nm. The column temperature was maintained at 30°C and the run time was 6 min. The method was linear over 0-180 µg/mL for ABV, 0-15 µg/mL for DTV, and 0-90 µg/mL for LVD with correlation coefficients (R^2) of 0.9993, 0.9998, and 0.9998, respectively. Accuracy was within 98.15-101.35% and precision showed %RSD < 1%. The LOD/LOQ values were 0.746/2.261 µg/mL for ABV, 0.057/0.172 µg/mL for DTV, and 0.293/0.888 µg/mL for LVD. Forced degradation showed maximum degradation of 6.83% (ABV), 8.01% (DTV), and 5.28% (LVD), confirming specificity and suitability for stability and routine QC.

INTRODUCTION

HIV can be effectively managed through the application of combination therapy¹. The activity of HIV-1 reverse transcriptase²⁻³ is proficiently inhibited by abacavir, which possesses the chemical formula C₁₄H₁₈N₆O. Dolutegravir⁴, an FDA-approved integrase strand transfer inhibitor, is employed in the treatment of HIV infection. The viral integrase enzyme executes a two-step process that specifically obstructs the strand transfer phase of the viral genome's integration into the host cell's DNA. Its chemical formula is C₂₀H₁₉F₂N₃O₅, and it demonstrates solubility in both water and methanol. Lamivudine exhibits enhanced potency and targets both the Human Immunodeficiency Virus (HIV) and Hepatitis B Virus (HBV) by inhibiting the reverse transcriptase enzyme. The molecular formula for lamivudine is

$C_8H_{11}N_3O_3S$, and it showcases excellent solubility in water, low solubility in methanol, and negligible solubility in acetone. According to the literature, abacavir (ABV), dolutegravir (DTV), and lamivudine (LVD) can be measured both individually and concurrently in bulk and mixed-dose forms utilizing chromatographic techniques and HPLC-MS/MS⁵⁻⁸. The work reveals that the specificity, sensitivity, accuracy, and precision of the RP-HPLC technique are commendably stable. The developed solution adhered to ICH Q2 R1 criteria, which were successfully validated. There have been limited reports of simultaneous analytical techniques employing HPLC on these combination dosage forms; following the application of specific stress conditions, the current technique demonstrated remarkable linearity, precision, accuracy, and stability.

Materials and Methods

Instruments Required

A 3098 Photo Diode Array (PDA) detector, Empower 3 software were utilized to execute an RP-HPLC technique on a Waters Alliance 2695 HPLC system. A Sunfire C18 stationary phase measuring 4.6×250 mm and 5 μm was utilized. A Denver electronic balance, Whatman filter paper No. 41, and an ultrasonic bath sonicator called a Frontline FS 4, were utilized in this work.

Reagents Used

Hetero Drugs Limited in Hyderabad, India, supplied lamivudine, dolutegravir, and abacavir. HPLC-grade acetonitrile and ammonium acetate were procured from standard laboratory suppliers, and Milli-Q water was used.

Reagents and Chemicals

Analytical and HPLC-grade chemicals were used. Water underwent double distillation and membrane filtration. The mobile phase was prepared using 0.01 N ammonium acetate (aqueous buffer) and HPLC-grade acetonitrile in the ratio 60:40 v/v. The tablets (ABV 600 mg, LVD 300 mg, and DTV 50 mg) were procured locally.

Preparation of Standard Solution

10 mg each of Abacavir (ABV), Dolutegravir (DTV), and Lamivudine (LVD) were dissolved in the diluent (water:acetonitrile, 50:50 v/v) and diluted to a final volume of 10 mL to achieve stock solutions of 1000 $\mu\text{g}/\text{mL}$. A working solution was made by combining 1.5 mL of ABV, 0.125 mL of DTV, and 0.75 mL of LVD stock solutions in a 10 mL flask, followed by dilution to volume with the mobile phase, resulting in concentrations of ABV: 150 $\mu\text{g}/\text{mL}$,

DTV: 12.5 μ g/mL, and LVD: 75 μ g/mL. The solution was maintained at a temperature between 2 and 8 °C in amber vials⁹⁻¹¹.

Selection of Mobile Phase

The optimal mobile phase for separating Abacavir, Dolutegravir, and Lamivudine was found to be 0.01 N ammonium acetate:acetonitrile (60:40 v/v), providing sharp, well-resolved peaks with high theoretical plates, minimal tailing, and good peak areas.

Sample Preparation

An aliquot equivalent to twenty tablets was gently crushed and added to a 10 mL volumetric flask. Using the diluent (water:acetonitrile, 50:50 v/v), the resultant mixture was sonicated for 5 minutes before being filtered through a 0.45 μ m membrane. By diluting the filtrate accordingly, the final concentrations for LVD, DTV, and ABV were 300, 25, and 150 μ g/mL, respectively. For analysis, a 10 μ L sample was injected into the HPLC system¹²⁻¹⁴. The sample peak areas were compared with those of standard solutions at identical concentrations.

RESULTS AND DISCUSSION

Chromatographic Conditions

Using a mobile phase consisting of 0.01 N ammonium acetate and acetonitrile at a ratio of 60:40 (v/v), chromatographic separation was carried out on a Sunfire C18 column (4.6 \times 250 mm, 5 μ m) maintained at 30°C. The flow rate of the mobile phase was set at 1.0 mL/min, the detection wavelength was 257 nm, the injection volume was 10 μ L, and the run time was 6 min. Prior to utilization, the mobile phase was degassed and filtered through a 0.45 μ m membrane¹⁵⁻¹⁸. Standard solutions were accurately aliquoted into Amber vials for subsequent analysis.

Method Validation

The International Council for Harmonization's (ICH) recommended HPLC method was verified against Q2 (R1) criteria for analytical method validation¹⁹⁻²⁰.

System Suitability Study

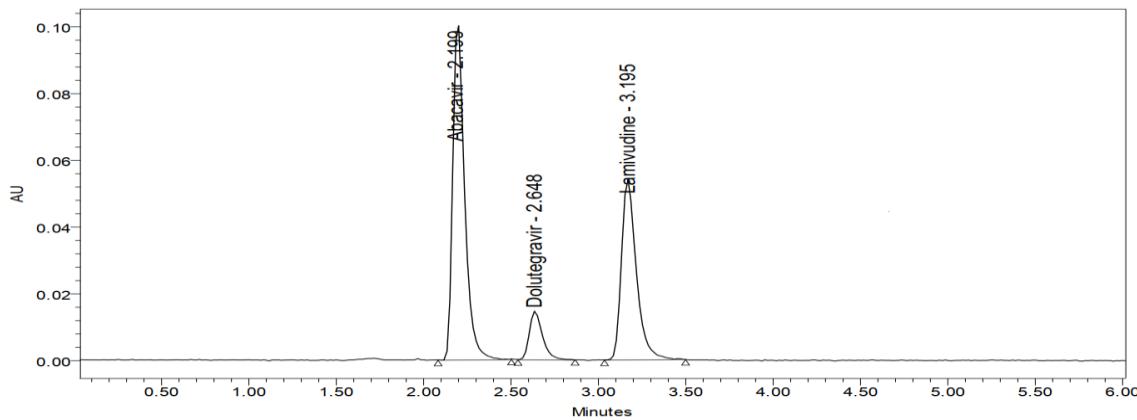
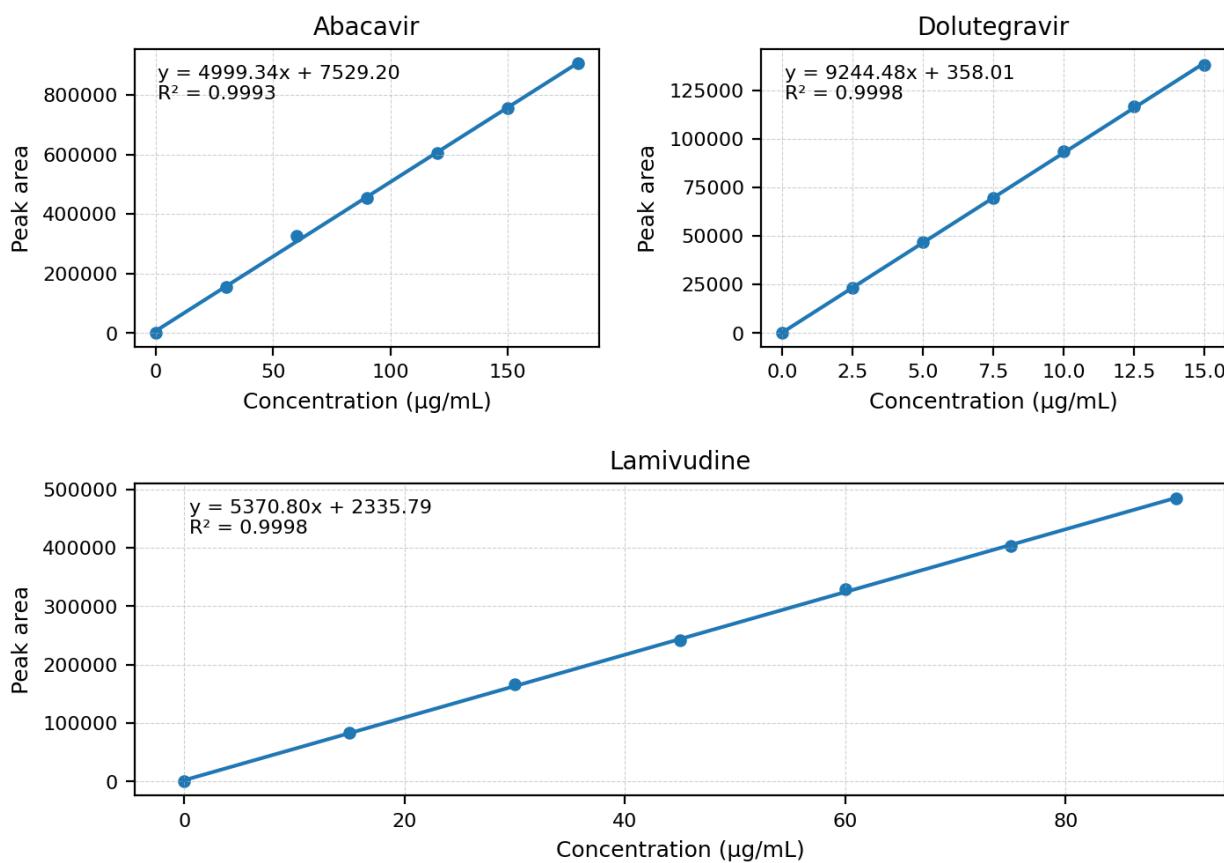

The system suitability investigation, Table 1 displays the good peak areas and theoretical plates of >5000 and a good tailing factor of <2. In Figure 1, the chromatograms are shown.

Table-1: System Suitability Parameter for Abacavir, Dolutegravir, and Lamivudine

Parameter	Abacavir	Dolutegravir	Lamivudine
Retention Time (Min.)	2.199	2.648	3.195

Peak Area (%RSD)	0.6	0.7	1.3
Tailing Factor	1.08	1.11	1.10
Theoretical Plates	5450	6125	5890
Resolution	--	4.32(vs Abacavir)	3.25(vs Dolutegravir)

%RSD: Percentage Relative standard deviation


Fig.-1: Standard Chromatogram

Linearity

Standard solutions were prepared to obtain linear concentrations of ABV, DTV, and LVD in the ranges of 0-180 $\mu\text{g/mL}$, 0-15 $\mu\text{g/mL}$, and 0-90 $\mu\text{g/mL}$, respectively (Figure 2). The calibration plots of concentration versus peak area showed good linearity across the studied ranges with correlation coefficients (R^2) of 0.9993 (ABV), 0.9998 (DTV), and 0.9998 (LVD) (Table 2).

Table-2: Results of Linearity Studies

S. No	Abacavir $\mu\text{g/mL}$	Peak Area	Dolutegravir $\mu\text{g/mL}$	Peak Area	Lamivudine $\mu\text{g/mL}$	Peak Area
1	0	0	0	0	0	0
2	30	155570	2.5	23160	15	83171
3	60	325531	5	47080	30	166448
4	90	453209	7.5	69618	45	242030
5	120	606245	10	93418	60	328714
6	150	755329	12.5	116599	75	403560
7	180	906405	15	137966	90	484231

Fig.-2: Calibration Graph of Abacavir, Dolutegravir, and Lamivudine

Precision

Evaluations were conducted utilizing system precision, repeatability, and intermediate precision to assess the proposed HPLC method's precision in accordance with ICH Q2(R1). System precision showed %RSD values of 0.447% (ABV), 0.748% (DTV), and 0.611% (LVD) (Table 3). Repeatability gave %RSD values of 0.313% (ABV), 0.276% (DTV), and 0.649% (LVD) (Table 4). Intermediate precision (different day) showed %RSD values of 0.352% (ABV), 0.204% (DTV), and 0.953% (LVD) (Table 5).

System Accuracy

Table-3: System precision of Abacavir, Dolutegravir, and Lamivudine

Concentration (µg/mL)	Abacavir	Dolutegravir	Lamivudine
	60	5	30
Area (Mean±SD)	591775.33 ± 2647.55	92093.50 ± 689.17	316491.33 ± 1932.74
%RSD	0.447	0.748	0.611

All values are expressed as Mean \pm SD, n=6 %RSD: Percentage Relative standard deviation

Table-4: Repeatability table of Abacavir, Dolutegravir, and Lamivudine

Concentration (μ g/mL)	Abacavir	Dolutegravir	Lamivudine
	60	5	30
Area (Mean \pm SD)	591369.00 \pm 1850.19	92164.33 \pm 254.08	314959.00 \pm 2045.50
%RSD	0.313	0.276	0.649

All values are expressed as Mean \pm SD, n=6 %RSD: Percentage Relative standard deviation

Table-5: Abacavir, Dolutegravir, and Lamivudine Intermediate precision

Concentration (μ g/mL)	Abacavir	Dolutegravir	Lamivudine
	60	5	30
Area (Mean \pm SD)	592106.33 \pm 2085.00	89165.00 \pm 182.17	309474.17 \pm 2949.94
%RSD	0.352	0.204	0.953

All values are expressed as Mean \pm SD, n=6 %RSD: Percentage Relative Standard Deviation

Accuracy

The method's accuracy was evaluated by recovery studies at 50%, 100%, and 150% levels. Recoveries ranged from 99.26 to 99.96% for ABV, 98.15 to 100.67% for DTV, and 99.20 to 101.35% for LVD, confirming acceptable accuracy (Table 6).

Table-6: Accuracy Results

Drug	Level %	Spiked	Recovered	% Recovered
Abacavir	50%	60	59.82	99.70
	100%	120	119.51	99.59
	150%	180	179.26	99.59
Dolutegravir	50%	5	4.94	98.89
	100%	10	9.95	99.45
	150%	15	15.03	100.22
Lamivudine	50%	30	30.01	100.03
	100%	60	60.09	100.15
	150%	90	89.68	99.64

Robustness

The robustness of the methodology was assessed by manipulating the wavelength (± 2 nm) and flow rate (± 0.2 mL/min). The %RSD values consistently remained below 2% (0.12–0.28% for wavelength, 0.06–0.3% for flow rate), thereby affirming the method's dependability amidst minor intentional variations, as illustrated in Table 7.

Table-7: Robustness Data

Condition	Drug	Mean Area	S.D	%RSD	Acceptance Criteria
Wavelength 255 nm	Abacavir	871140.0	1236.85	0.14%	< 2%
	Dolutegravir	312478.33	635.27	0.2%	
	Lamivudine	202635.33	471.74	0.23%	
Wavelength 259 nm	Abacavir	871304.67	1027.97	0.12%	< 2%
	Dolutegravir	312862.67	841.63	0.27%	
	Lamivudine	202751.0	575.11	0.28%	
Flow rate 0.8 mL/min	Abacavir	870514.0	690.27	0.08%	< 2%
	Dolutegravir	312285.33	949.77	0.3%	
	Lamivudine	202664.0	414.09	0.2%	
Flow rate 1.2 mL/min	Abacavir	871377.67	664.57	0.08%	< 2%
	Dolutegravir	312111.0	326.22	0.1%	
	Lamivudine	202764.0	123.12	0.06%	

SD: Standard deviation, %RSD: Percentage Relative standard deviation

Limits of Quantification (LOQ) and Detection (LOD)

Using the calibration curve slope (S) and standard deviation (σ), LOD and LOQ were calculated as per ICH Q2(R1). Dolutegravir showed the highest sensitivity with the lowest LOD/LOQ (0.057 $\mu\text{g/mL}$ and 0.172 $\mu\text{g/mL}$), followed by lamivudine (0.293 $\mu\text{g/mL}$ and 0.888 $\mu\text{g/mL}$). Abacavir showed LOD/LOQ of 0.746 $\mu\text{g/mL}$ and 2.261 $\mu\text{g/mL}$. These results confirm that the method is sufficiently sensitive for routine analysis (Table 8).

Table-8. LOD and LOQ

Drug	Slope (S)	Standard Deviation (σ)	LOD ($\mu\text{g/mL}$)	LOQ ($\mu\text{g/mL}$)
Abacavir	4999.33	1130.41	0.746	2.261
Dolutegravir	9244.50	158.69	0.057	0.172
Lamivudine	5366.07	476.28	0.293	0.888

Assay

Table 9 displays the assay findings for the active substances, which were determined to be within acceptable bounds.

Table-9: Assay Results

Drug	Label Claim (mg)	Assay (%)
Abacavir	600	99.73
Dolutegravir	50	99.88
Lamivudine	300	99.42

Force Degradation

Forced degradation studies were performed under acidic (0.1 N HCl), basic (0.1 N NaOH), oxidative (3% H₂O₂), thermal, photolytic (UV), and neutral (water) conditions to assess specificity and stability-indicating capability. The observed assay values were 93.17-99.35% for ABV, 91.99-99.66% for DTV, and 94.72-99.09% for LVD, corresponding to maximum degradations of 6.83%, 8.01%, and 5.28%, respectively (Table 10). These results demonstrate that the method can separate analyte peaks from degradation products.

Table-10: Forced Degradation Results

Stress Condition	ABV % Assay	ABV % Degradation	DTV % Assay	DTV % Degradation	LVD % Assay	LVD % Degradation
Acid (0.1N HCl)	93.17	6.83	92.34	7.66	94.91	5.09
Base (0.1N NaOH)	96.48	3.52	94.47	5.53	96.00	4.00
Oxidative (H ₂ O ₂)	95.23	4.77	91.99	8.01	94.72	5.28
Thermal	98.32	1.68	97.22	2.78	97.34	2.66
Photolytic (UV)	98.06	1.94	98.41	1.59	98.08	1.92
Neutral (Water)	99.35	0.65	99.66	0.34	99.09	0.91

The degradation results indicate that all three compounds experienced measurable degradation under stress conditions, with the most significant degradation observed under

basic and acidic hydrolysis. Dolutegravir showed relatively better stability in acidic and oxidative conditions. The observed degradation levels were within acceptable limits (below 15%), verifying that the HPLC technique developed is appropriate for use as a stability-indicating method.

CONCLUSION

In compliance with ICH Q2(R1) guidelines, an RP-HPLC method was developed and validated for simultaneous estimation of Lamivudine (LVD), Dolutegravir (DTV), and Abacavir (ABV) in tablets. The method showed excellent linearity ($R^2 \geq 0.9993$) over 0-90 $\mu\text{g/mL}$ (LVD), 0-15 $\mu\text{g/mL}$ (DTV), and 0-180 $\mu\text{g/mL}$ (ABV), with good accuracy (98.15-101.35%), precision (%RSD < 1%), and low LOD/LOQ values (Table 8). Forced degradation results confirmed the method as stability-indicating, and the proposed method is suitable for routine quality control and stability studies.

CONFLICTS OF INTEREST

Not applicable

FUNDING

This research didn't receive any funding from any agencies.

AUTHORS CONTRIBUTIONS

Sirisha Gorantla: planning, conceptualization, data collection and paper writing. Subhranshu Panda: review of literature and data interpretation. The research profile of the authors can be verified from their ORCID ids, given below:

Subhranshu Panda: <https://orcid.org/0000-0003-4782-8895>

Sirisha Gorantla: <https://orcid.org/0009-0000-4360-438X>

REFERENCES

1. P. Cahn, J. S. Madero, J. R. Arribas, A. Antinori, R. Ortiz, A. E. Clarke *et al.*, *Lancet*, **393(10167)**, 143-155(2019), [https://doi.org/10.1016/S0140-6736\(18\)32462-0](https://doi.org/10.1016/S0140-6736(18)32462-0).
2. B. A. Santavecchi, S. Miller, L. M. Childs-Kean, *Ann Pharmacother*, **54(12)**, 1252-1259(2020), <https://doi.org/10.1177/1060028020933772>.
3. M. Doffito, L. Waters, P. Cahn, R. Paredes, J. Koteff, J. Van Wyk, *AIDS Res Hum Retroviruses*, **36(1)**, 13-18(2020), <https://doi.org/10.1089/AID.2019.0171>.
4. K. Joshi, S. Shinde, S. Karatela, A. Mulkalwar, *Cureus*, **16(6)**, e62522(2024), <https://doi.org/10.7759/cureus.62522>.

5. P. Cahn, A. L. Pozniak, H. Mingrone, A. Shuldyakov, C. Brites, J. F. Andrade-Villanueva, *et al.*, *Lancet HIV*, **2(4)**, e127–e136(2015). <https://doi.org/10.3389/fimmu.2022.1033098>.
6. S. Min, L. Sloan, E. DeJesus, T. Hawkins, L. McCurdy, I. Song, et al., *AIDS*, **25(14)**, 1737–1745(2011). <https://doi.org/10.1097/QAD.0b013e32834a1dd9>.
7. F. Raffi, H. Jaeger, E. Quiros-Roldan, H. Albrecht, E. Belonosova, J. M. Gatell, *Lancet Infect Dis*, **13(11)**, 927-35(2013), [https://doi.org/10.1016/S1473-3099\(13\)70257-3](https://doi.org/10.1016/S1473-3099(13)70257-3).
8. S. L. Walmsley, A. Antela, N. Clumeck, D. Duiculescu, A. Eberhard, F. Gutiérrez, *N Engl J Med*, **369(19)**, 1807-18(2013), <https://doi.org/10.1056/NEJMoa1215541>.
9. S. Swarnalatha, N. Vallakeerthi, R. S. Moorthy, K. Pingili, P. M. Reddy, *Asian J Green Chem*, **8(4)**, 478-496(2024), <https://doi.org/10.48309/AJGC.2024.454781.1497>.
10. R. Zash, L. Holmes, M. Diseko, D. L. Jacobson, S. Brummel, G. Mayondi, *N Engl J Med*. **381(9)**, 827-840(2019), <https://doi.org/10.1056/NEJMoa1905230>.
11. T. N. Kakuda, *Clin Ther*, **22(6)**, 685-708(2000), [https://doi.org/10.1016/S0149-2918\(00\)90004-3](https://doi.org/10.1016/S0149-2918(00)90004-3).
12. P. T. Giri, A. R. Chabukswar, S. C. Jagdale & S. A. Chindhe, *Int J App Pharm*, **17(4)**, 241–253(2025), <https://doi.org/10.22159/ijap.2025v17i4.54506>.
13. L. Dickinson, S. Khoo, D. Back, *Antiviral Res*, **85(1)**, 176-89(2010), <https://doi.org/10.1016/j.antiviral.2009.07.017>.
14. Z. Desta, T. Saussele, B. Ward, J. Blievernicht, L. Li, K. Klein, et al., *Pharmacogenomics*, **8(6)**, 547–558(2007), <https://doi.org/10.2217/14622416.8.6.547>.
15. Y. Zhang, M. Huo, J. Zhou, S. Xie, P. K. Solver, *Comput Methods Programs Biomed*, **99(3)**, 306-14(2010), <https://doi.org/10.1016/j.cmpb.2010.01.007>.
16. M. Blessy, R. D. Patel, P. N. Prajapati, Y. K. Agrawal, *J Pharm Anal*. **4(3)**, 159-165 (2014), <https://doi.org/10.1016/j.jpha.2013.09.003>.
17. Z. Shaikh, O. Gadhav, B. Salunke, S. Aher, H. Shewale, N. Nagare and M. R. N. Shaikh, *Rasayan J. Chem.*, **18(2)**, 981-988 (2025). <http://doi.org/10.31788/RJC.2025.1829240>
18. D. S. Bhavsar, B. N. Patel, C. N. Patel, *Pharm Methods*. **3(2)**, 73-8 (2012), <https://doi.org/10.4103/2229-4708.103876>.
19. L. Shribhumika, M. D. Ramgopal, *Res J Pharm Tech*, **17(3)**, 1071-5(2024), <https://doi.org/10.52711/0974-360X.2024.00167>.
20. R. Godela, G. Sowjanaya, *Futur J Pharm Sci*, **6**, 9(2020), <https://doi.org/10.1186/s43094-020-00026-0>.