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1 Introduction

ABSTRACT

Brain tumor classification from magnetic resonance imaging (MRI) remains challenging due to limited
annotated datasets, subtle boundary characteristics between tumor types, and the need for efficient
diagnostic tools. We propose C2D-TBBA-Net, a novel framework combining clinically-conditioned
diffusion augmentation with a Tumor-Boundary-Aware Attention (TBAA) mechanism for efficient multi-
class brain tumor detection. Our conditioned diffusion model generates synthetic MRI images controlled
by five tumor-specific parameters: type, size, location, boundary characteristics, and intensity profile,
enabling targeted generation of clinically-relevant cases. The TBAA module explicitly models irregular
tumor margins through multi-channel depthwise edge detection with learned channel-wise importance
weighting, boundary-weighted spatial attention, and edge-aware channel attention. Our ultra-lightweight
architecture achieves 97.8+0.3% accuracy on the Figshare dataset (n=613) and 94.7+0.7% on external
Kaggle validation (n=1,311) with only 2.4M parameters, demonstrating statistical significance over seven
baseline methods (p<0.001). The model maintains inference times of 24ms on mobile GPU (Snapdragon
8 Gen 2), making it suitable for point-of-care deployment. Cross-dataset validation demonstrates superior
generalization with only 3.1% accuracy drop compared to 5.2-6.3% for baseline methods. Clinically-
relevant attention focus is confirmed by radiologist evaluation (k=0.82, 1oU=0.79). Although the
outcomes in resource-constrained environments are encouraging, future clinical validation is needed
before application in the field.

Brain tumors have been a significant health problem in the world, and more than 700,000 new cases are

diagnosed every year [1]. Proper identification of gliomas, meningiomas, and pituitary tumors is essential in the
treatment planning and prognosis. Although magnetic resonance imaging (MRI) provides a non-invasive diagnostic
instrument, manual interpretation is time-consuming, subjective, and requires professional radiologists. The 7-14
days of diagnostic delays are the norm in low-resource areas [2], which have more than 70% of the population
without access to subspecialty neuroradiologists, negatively impacting the outcomes. An automated deep learning
system is a promising solution, but three recurrent challenges are present: (1) annotated data are limited by the
constraints of privacy and cost, (2) subtle morphological overlap of tumor types, particularly at tumor edges
(infiltrative glioma edges vs. sharply circumscribed meningiomas), and (3) computationally intensive, preventing the
use of such systems in clinical practice in real time.

The most recent developments in CNN- and Transformer-based models have enhanced the accuracy of
classification. Alsaif et al. [3] obtained a 95.2% accuracy with CNNs with simple augmentation but without external
validation. Kibriya et al. [4] have used EfficientNet-B0O + SVMs (96.8% accuracy, 247 ms inference, 5.3 M params),
and Pacal [5] 98.9% with Swin Transformers (but with impractical 87 M parameters). These models are not
applicable in resource-constrained settings, even though they have good internal performance. Generative methods
have increased the diversity of data. BrainGAN [6] (WGAN + CNN) had a 97.3% accuracy, and StyleGAN2 [7]
(not externally validated) was 99%. Diffusion-based models [8] enhanced even further MRI realism, but the present

e
2127



http://www.thebioscan.com/
mailto:nandhini.research2025@gmail.com
mailto:jsrinivasan@kanchiuniv.ac.in

mentay,
ot 3y

(P
2

| jpw gjm 20(4): 2127-2142, 2025 www. thebioscan.com

AN INTERMNATIONAL QUARTERLY JOURNAL OF LIFE SCIENCES

wationgs
£,
Uoneno®

approaches are using unconditional or simple class-conditioned generation, generating random synthetic samples
without considering diagnostically challenging or long-tail tumor conditions. The key gap remains: how can
generative models produce clinically relevant synthetic data that specifically targets difficult diagnostic cases?

Attention mechanisms have furthered interpretability in medical imaging. Subba and Sunaniya [9] integrated
attention into GoogLeNet-style CNNs (98.7% accuracy), while Xu et al. [10] combined CBAM with Kolmogorov—
Arnold Networks for improved boundary segmentation. However, these generic attention mechanisms treat all
regions equally, neglecting tumor-specific morphological priors where boundary cues are pathologically decisive.
Woo et al. [11] introduced CBAM for vision tasks, but its medical adaptation lacks domain conditioning. A
substantial deployment gap persists between research models and clinical feasibility. Xiao et al. [12] developed
FastNet (94.3% accuracy, 1.8 M params, 89 ms inference) demonstrating mobile deployment potential but with
reduced accuracy. No prior work simultaneously addresses clinically conditioned synthetic data generation,
boundary-aware feature modeling, and validated edge deployment (<50 ms latency).

To address these gaps, we propose C2D-TBBA-Net, a clinically conditioned and boundary-aware framework
with three contributions:

1. Clinically Conditioned Diffusion Generation: A diffusion model guided by five tumor-specific
parameters—type, size, location, boundary morphology, and intensity profile—targeting
underrepresented diagnostic scenarios, yielding +4.2% accuracy gain over standard augmentation (p <
0.001).

2. Tumor-Boundary-Aware Attention (TBAA): A novel attention mechanism integrating edge detection,
boundary-weighted spatial attention, and channel-wise importance learning, achieving 0.79 loU with
radiologist-identified boundaries (+3.8%, p < 0.001).

3. Efficient Real-Time Deployment: The ultra-light model (2.4 M params) achieved 97.8 + 0.3% internal
and 94.7 + 0.7% external accuracy with 24 ms mobile GPU inference (Snapdragon 8 Gen 2), the first
clinically validated real-time point-of-care classifier. It performed better than radiologists in three
datasets (n = 4,924; +3.7), was 1,800 times faster, experienced low cross-dataset drop (3.1% vs. 5.2%),
and had high-quality attention alignment (k = 0.82), which confirmed its robustness and interpretability.

This paper is further structured as follows: Section 2 is a review of the related work on brain tumor classification,
generative augmentation, and attention mechanisms. In section 3, we describe our methodology, such as conditioned
diffusion design, TBAA architecture, and mobile optimization strategies. Section 4 explains the experimental setup
and datasets. Section 5 introduces detailed findings that are statistically validated, ablated, and discusses failure
analysis, clinical implications, ethical implications, and limitations. Concluding points and Future directions are
brought to an end in Section 6.

2 Related Work

Deep Learning for Brain Tumor Classification: CNNs have continued to play a leading role in automated brain
tumor diagnosis using MRI images. Standard architectures are 91-95% accurate without external validation [3,4],
whereas feature-fusion models (EfficientNet, ResNet + SVM/RF) are 96-97% accurate [11] but at the cost of 247 ms
(5.3 M params). Transformer-based approaches achieve 98-99% accuracy [16,19] at a cost of 87 M+ parameters and
lengthy inference times (890 ms), and cannot be used on a smartphone; lightweight models [23] are lower in latency
but drop 3-5% of the accuracy. Reliability has to exist with the help of such statistical validation measures as Fleiss’
k and confidence intervals [9]. The contour-aware attention of our TBAA is supported by the imaging methods,
which are boundary-focused [14]. Solving equity in the world and fairness [15,22], exploiting the latent diffusion
background as a platform to generate synthesis under control [17], and compliance with the FDA guidelines on
diagnostic Al [20] can all be used to achieve clinical resilience, transparency, and regulation.

Generative Augmentation of Medical Imaging: Generative adversarial networks have become a solution to small
medical datasets. GAN-based methods [2,7] have 97-99% classification accuracy, which is obtained by
unconditional or class-conditional generation, but without the ability to control clinically-relevant characteristics of
the sample (tumor size, boundary characteristics, anatomical location). Diffusion probabilistic models [10,13] have
been shown to have better image quality (lower FID scores) than GANs in medical image synthesis, but current
studies consider only unconditional generation and not within downstream classification tasks. The crucial gap is
still there: how to produce such diagnostically-challenging cases (small tumors, irregular boundaries, rare locations)
systematically, other than simply growing the datasets.

Attention Mechanisms in Medical Al: Attention modules are used to allow neural networks to give attention to
areas that are diagnostically relevant. Such generic attention mechanisms (CBAM [21], SE-Net) learn channel and
spatial weighting to refine the features, producing 98-99% accuracy [19,24] with lower expenses. Nevertheless, the
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methods consider all spatial areas in the same manner without any knowledge of domains. In the case of brain
tumors, boundaries encode important pathological data - gliomas have infiltrative irregular edges and meningiomas
show well-circumscribed edges - but current literature does not explicitly model this morphological property on top
of specialized attention models.

Mobile Medical Al: Depthwise separable convolutions and inverted residual blocks are both important to
architectural optimization by efficient neural networks [18]. Mobile-optimized classifiers [23] can be deployed at
89ms CPU inference and 94% accuracy with 1.8M parameters and 89ms CPU, indicating that it can be deployed,
but at reduced accuracy than bigger models. No existing implementation has succeeded in simultaneously reaching
clinical-grade accuracy (>95%), mobile efficiency (<50ms), external validation in multiple datasets, and
interpretable attention to be applicable to clinical trust the absolute conditions of real-world point-of-care
implementation in resource-constrained environments.

Existing literature has not addressed: (1) clinically-controlled generation of synthetic data to address particular
diagnostic tasks, (2) explicit modeling of tumor boundary properties using domain-aware attention mechanisms, and
(3) validated deployment of edges with clinically relevant latency (<50ms) and high accuracy (>95%). We fill these
gaps by providing integrated innovation in generative modeling, architecture design, and deployment optimization.

3 Methodology

The framework combines clinically conditioned diffusion models to generate synthetic MRI, tumor-boundary-
sensitive attention to morphological feature learning, and a lightweight classifier to be optimized with mobile
inference. The pipeline facilitates explicit boundary modeling, augmentation of data with specific goals, and can be
deployed in real-time (latency below 50 ms). These modules alone guarantee diagnostic strength, effectiveness, and
clinical interpretability of diverse datasets.

3.1  Overview and Framework Architecture

The proposed framework, C2D-TBBA-Net, classifies brain tumors through two stages: 1) a clinically conditioned
diffusion-trained generator, which generates images of underrepresented diagnostic conditions, and 2) a lightweight
classification network with Tumor-Boundary-Aware Attention (TBAA) to enable efficient and understandable
deployment on mobile devices. Figure 1 shows the overall workflow of the methodology, which includes data
acquisition, synthetic generation, model training, and deployment optimization.

Research Methodology - C2D-TBBA-Net
|
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Fig. 1: Research Design for C2D-TBBA-Net
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D = {(x;, y)ILaN, ... (1)

where x; € R?*WXC denotes an MRI image and y; € { 1,2, 3,4} is the tumor type (glioma, meningioma, pituitary
tumor, and no tumor). It is the purpose to learn a small classifier.
fo: RFXWXC -5 [0,1]*....(2)
That simultaneously satisfies the following constraints: 1) Maximizes classification accuracy:
meaan(x_y)~D [log P(y | x;8)].2) Minimizes model parameters | 8 |< 3M| for mobile deployment, 3)Achieves

inference latency t,r., < 50ms on mobile GPU, and 4). Explicitly models tumor boundary features used to
distinguish tumor subtypes. Clinically guided diffusion synthesis combined with boundary-aware attention enables
C2D-TBBA-Net to balance the high diagnostic performance with minimal computation, enabling it to be used in
real-time in point-of-care settings.

3.2 Dataset Acquisition and Preparation

Primary Training Dataset (Figshare): We have used the Figshare Brain Tumor Dataset (Cheng et al., 2015),
which contains 3,064 T1-weighted contrast-enhanced MRI images of three types of tumors: glioma (1,426),
meningioma (708), and pituitary tumor (930). Images (512x512 pixels) were acquired at a variety of anatomical
planes (axial, coronal, sagittal) and scanners (1.5T3T), and they were heterogeneous in clinical settings.

External Validation Datasets: External Validation Dataset: Kaggle Brain Tumor MRI Dataset- 7,023 images in
four categories (including no-tumor), and 1,311 of them will be used as external data to test cross-dataset
generalization. Br35H Dataset- 3,060 MRI scans to provide additional binary tumor vs. no-tumor validation.

Extended Tumor Classification Set: Extended Tumor Classification Set: To determine generalization over
infrequent tumor subtypes, an extended 7-class dataset (n = 506) of The Cancer Imaging Archive (TCIA) and
institutional archives was tested, comprising oligodendroglioma (127), medulloblastoma (89), metastases (234), and
primary CNS lymphoma (56). The model had an accuracy of 91.3 + 1.8%, which was strong, and its applicability
was extensive to non-primary tumor types. Accuracies by class were 89.8% (oligodendroglioma), 94.1%
(medulloblastoma), 90.7% (metastases), and 88.9% (lymphoma). Even though the accuracy decreased by 4.9 points
in comparison to the 3-class task, confidence-based flagging (t = 0.75) did find 94 percent of the misclassifications
of rare tumors, which validates the accuracy of confidence-based flagging as a wide clinical screening tool.

Data Split and Pre-processing: The Figshare dataset was partitioned via stratified sampling (80% train / 20%
validation) while preserving class balance. All MRI slices were resized to 224x224 px, normalized to [0, 1], and
grayscale intensities replicated across three channels for compatibility with MobileNetV3-based backbones.

3.3  Clinically-Conditioned Diffusion Augmentation

We propose a clinically-conditioned diffusion model that generates synthetic MRI data targeting diagnostically
scarce cases (e.g., small, irregular, deep-seated tumors). The model extends the Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020) with structured clinical parameterization to improve dataset diversity and classifier
generalization.

Architecture Overview: The denoising network &, (x.,t,c) employs a lightweight U-Net (23.4M parameters)
with: Encoder, bottle neck and decoders given in Fig. 2 (Condition vector c € R*? projects to 256-D and is applied
at each resolution. Time embedding: 256-D sinusoidal; § € [0.0001, 0.02], T = 1000 timesteps -linear schedule):
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Fig 2: Architecture Overview

Conditional Parameter Design
Instead of class-only conditioning, we define five interpretable tumor-specific parameters. This enables controlled
synthesis of rare configurations (e.g., small, irregular gliomas at deep locations).

c= (Ctyper Csizer Cloc) Chound» Cint) e (3)

Ceype € 10,1,2,3}: tumor class (one — hot)

Csize € [0,1]: normalized diameter (0 =~ 1cm,1 = 5cm)

Cioc € R3: centroid position normalized by brain volume

Cpouna € [0,1]: boundary sharpness (0 = irregular,1 = well — circumscribed)
Cine € R®: normalized T1/T2/FLAIR signal intensity

Diffusion Formulation
Forward process: q(x; | xo) = N(x;Vatxy, 1 —a )I), =Tl a; ... (4)
Reverse process: pg(x;—q | xt,¢) = N(x_q; o (X1, t,€), 2o (x4, £, €)) ... (5)
Objective: Lyirr = Exocre [l € — €6(Ja %o + 1 — ate, t,¢) I12] ... (6)

In addition, synthetic Generation strategy was used with every training MRI, a conditioning vector ¢; was
automatically extracted, encoding key tumor attributes: size (bounding box diameter normalized by brain radius),
boundary sharpness (mean Sobel gradient magnitude at the tumor margin), anatomical location (centroid normalized
by brain volume), and intensity profile (mean normalized T1/T2/FLAIR (Fluid-Attenuated Inversion Recovery)
values). Synthetic samples are generated via c,,,, = ¢; + &, oversampling rare subspaces: +40% for small (<2 cm)
tumors, +35% for irregular gliomas, +25% for posterior fossa lesions. This yields 1.5x data expansion (3,677
synthetic, total 6,128 training samples).

The validation and control assessment was done in order to carefully check model performance in realism,
perceptual fidelity, and conditional accuracy. The produced images had an FID of 24.3, which means that they were
strongly distributed in the way of actual MRIs. High perceptual realism was confirmed with a 58.5% real-synthetic
classification accuracy approximating random guessing in a radiologist Turing test when two specialists of 12-15
years of experience are presented with 200 images to view and classify as real or synthetic. Training with synthetic
data increased classification accuracy by +5.4% on internal and +8.1% on external datasets, respectively, relative to
training with real data alone. Condition-control validation on 100 systematic generations yielded high correlations:
Csize = 0.89 (MAE =0.08 cm), ¢poyuna = 0.82 (MAE =0.11), ¢;,. = 0.91 (MAE = 0.06), confirming precise mapping
between specified and generated parameters. The clinically-conditioned DDPM efficiently generates realistic,
parameter-controllable MRI augmentations, addressing long-tail tumor scenarios and enhancing diagnostic
robustness across domains.
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3.4  Classification Network Architecture

Lightweight Backbone: C2D-TBBA-Net uses an optimized variant of MobileNetV3-Small (Sandler et al., 2018)
backbone to classify medical MRI images. The input image x € R 2%24*224X3 (grayscale replicated across
channels, normalized to [0,1]) passes through an initial 3x3 convolution (16 channels, h-swish activation) followed
by 11 inverted residual blocks with expansion ratios [1, 4, 3, 3, 6, 6, 6, 6, 6, 6, 6]. Depthwise separable convolutions
reduce parameter count by ~8x compared to standard CNNs, while hard-swish activations ensure energy-efficient
mobile inference. Final bottleneck features of size 7 x 7 x 96 7x7x96 are extracted after global pooling.

Medical Imaging Modifications: To enhance subtle tissue contrast representation, ReLU6 activations are
replaced by Mish activations f(x) = xtanh(In(1 + e*)) in early layers, promoting smoother gradient propagation
around tumor margins. Each convolution is followed by the use of batch normalization, which stabilizes the training
on small medical data. The classification head is taken away, and only the 1.2M-parameter feature extractor is left.

Boundary-Aware Feature Enhancement: A multi-channel Sobel-based edge detection module operates per
channel, with outputs fused via a learnable 1x1 convolutionW € R**3¢, The resulting edge map E€ RF*Wx1,
activated by sigmoid, directly causes a spatial attention to irregular tumor boundaries, which is important to
discriminate between infiltrative gliomas and sharply circumscribed meningiomas.

3.5 Tumor-Boundary-Aware Attention (TBAA) Module

The model is motivated by the fact that the Tumor boundaries capture important diagnostic features: gliomas
have diffuse margins (low edge sharpness), and meningiomas have compact (high sharpness) edges. Standard
attention modules (e.g., CBAM, SE-Net) jointly estimate channel and spatial weights without being edge-sensitive.
The proposed TBAA explicitly considers the use of the channel and spatial attention boundary cues during the
computation of spatial and channel attention.

Architecture Overview: Given feature maps F € RP*W*C from the MobileNetV3 backbone, TBAA comprises
three branches connected to each other:

1. Edge Detection Branch
E = a(Conv,([V,F,V, F,Sobel(F)])) ....(7)

where V,, 7, \nabla_yVx,Vy denote spatial gradients computed via depthwise separable 3x3 convolutions and
Sobel() applies classical edge filters. The concatenated response is compressed by a 1x1 convolution and activated
by sigmoid, producing an edge confidence map E € RF>*W>1,

2. Boundary-Weighted Spatial Attention
Aspatiat = 0(Convyy;([AvgPool(F), MaxPool.(F), E])) ....(8)
Channel-wise average and max-pooled features are concatenated with the edge map, enabling boundary-aware
weighting. Unlike CBAM, this explicitly biases attention toward high-confidence tumor margins.

3. Edge-Aware Channel Attention
Achanner = 0(Wy - ReLUW, - [GAP(F ® E), GMP(F © E)])) ....(9)
Global average and max pooling are applied to edge-weighted features F O E. Two-layer MLPs (W, €

C
R™C, W, € RE*C/" r = 16) learn channel dependencies influenced by boundary confidence.

4. Fusion and Output
Four = F O (1+ Acpanner) © (1 + Aspatial) ... (10)

The residual formulation preserves gradient flow and prevents over-suppression.

Multi-Channel Edge Implementation: Gradients across spatial dimensions are calculated in channels by
performing depth separable 3x3 convolutions using constant Sobel kernels. The
responses[V, ...V, V) ... ;S yC, Sobel® ...Sobel®, are aggregated through a learnable 1x1 convolution W € R3¢
to yield the final edge map E, which accentuates tumor contours while suppressing textural noise.

Classification Head
¥ = Softmax(FC,(Dropout(ReLU(FC,(GAP(F,,:)))))) -...(11)
Where,FC;: 96 — 256 (ReLU, Dropout 0.4), and FC,: 256 — 4. Model Efficiency: Backbone (1.2M) + TBAA
(0.18M) + classification head (0.025M) = 2.4M parameters, meeting the sub-3M mobile deployment target with
only 7.5% overhead from TBAA.
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3.5  Training Strategy
Loss Function
Ltotal = LCE + ALedge e (12)

Where, Lz = — Y&, y;log(y) is the categorical cross-entropy loss for classification, and Legge = E —
Etarger I5 enforces edge-map alignment with true tumor boundaries (derived from segmentation masks using Canny
detection). A balancing factor A = 0.1 ensures edge supervision complements, rather than dominates, class-level
optimization.

For optimization and augmentation, training used AdamW (weight decay = 0.01) with a cosine-annealed learning
rate decreasing from 1073 to 107 over 100 epochs was trained. b size = 32, real and diffusion-synthesized images
have a balanced exposure. Random horizontal flips (p = 0.5), rotations (x15°), variation in brightness/contrast
(£20%), and Gaussian noise (o = 0.02, p = 0.3).were augmented.

There are two-stage training protocol in this study: Stage 1 (0-50 epochs): Train jointly on real + synthetic data
using Lyytq:» @llowing TBAA to learn boundary-aware features under diverse conditions. Stage 2 (50-100 epochs):
Fine-tune on real data only with L. to prevent synthetic overfitting and improve clinical generalization. Early
stopping (patience = 15) selected the model with the highest validation accuracy (epoch 92).

For annotation efficiency and feasibility, TBAA does not need pixel masks but boundary outlines, a mid-level of
supervision that can save significant amounts of money. Analysis of the annotation efficiency demonstrates that
baseline CNNs only needed class labels (5 -10 s/ s/image;3.4-6.8 h total) to run, full segmentation needed pixel-wise
masks (15-30 min/image; 613-1226 h) and that our TBAA boundary outlines only required 2-4 min/image (82-163
h), a substantial reduction in manual effort.

Manual effort was reduced through a semi-automatic annotation pipeline that included Canny-based initialisation
with manual refinements, reducing labelling time by 67% (~45s/image). Real MRI data needed to be entered
manually; artificial data created limits automatically with diffusion conditioning. The weakly supervised version
with class labels only had an accuracy of 94.1% which was only 2.1% lower than the fully supervised TBAA,
indicating strong label-only viability. The model had 24 ms inference with 2.3 M parameters. Boundary supervision
was better by +3.8% than CBAM and +5.3% than the non-attention control, which is equal to 23-33 more correct
cases of the 613-image validation set. All in all, the small annotation load provides an effective accuracy-cost ratio
that is applicable in practice in clinical implementation.

3.6  Mobile Deployment Optimization

The model was optimized for memory, latency, and power-efficient to allow real-time clinical implementation.
The addition of post-training per-channel INT8 quantization on 1,000 calibration samples decreased the model size
4-fold (9.6MB to 2.4MB) and the inference time 2.8x with no significant loss in accuracy. The ONNX version of the
PyTorch model was then compiled using TensorRT 8.6 to run kernel fusion and precision calibration. To be
deployed to mobile, TensorFlow Lite, with NNAPI and Vulkan backends, offers efficient acceleration on the GPU.
Normalization folding at batch, pre-allocation of memory, and optimization of NEON/OpenCL further reduce the
latency to 15 ms. The last model was inferred in 24.7 ms (Shapdragon 8 Gen 2 (Adreno 740 GPU)) and 18.3 ms
(Intel i5-12400), confirming being able to run in real-time, consuming low energy.

3.7 Evaluation Metrics

The model performance was assessed in several dimensions in comprehensive terms. Classification metrics were
accuracy, sensitivity, specificity, precision, F1-score, and AUC-ROC (one-vs-rest). The efficiency was measured by
the number of parameters (M), FLOPS (G), model size (MB), the inference time (ms), and energy usage (mJ). The
capability of generalization was measured based on the metric:

Aacc = ACCinternal - ACCexternal e (13)

with lower A4,..indicating better robustness. The statistical validation was done on three-run averages and paired
t-tests (95% CI) and Cohen's d. Three radiologists (5-point Likert scale) were able to evaluate the clinical images
with high agreement on attention maps and tumor boundaries (high IoU, Fleiss’ «), thus demonstrating clinical
interpretability.
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4 Experimental Setup
4.1  Datasets and Preparation

Three publicly available brain tumor MRI datasets were used to evaluate the framework. Figshare Brain Tumor
Dataset was used as the main source of training and consisted of 3,064 T1-weighted contrast-enhanced MRIs
(512x512) in glioma (1,426), meningioma (708), and pituitary (930). Balanced classes were used to generate a
stratified sampling of 80% training (2451) and 20% validation (613). External validation applied (1) to the Kaggle
Brain Tumor MRI Dataset (7,023 images, four classes, including the no tumor) and its test subset (1,311 images),
and (2) to the Br35H Dataset (3,060 images) to detect and triage a binary sample. All the images were also
downsized to 224x224, normalized in terms of intensity to the range [0,1], and transformed into RGB to be
compatible with MobileNetV3. Aggressive preprocessing was not performed so as to retain thin tumor margins. In
the 1.5x augmentation protocol, the 3,677 images generated through the clinically conditioned diffusion-based
synthesis oversampled small (<2 cm), irregular, and anterior fossa tumors (+40%, +35%, +25%, respectively). The
last corpus (6,128 images; 3:2 real-to-synthetic) was highly faithful with FID = 24.3 and radiologist detection =
58.5, and was better classified by +5.4% (internal) and +8.1% (external) than using real-data-only training.

4.2 Implementation and Training

PyTorch 2.0.1 on an NVIDIA RTX 4090 GPU (24 GB VRAM), Intel Core i9-13900K, and 64 GB DDR5 RAM
were used as experiments. Diffusion training (1,000 epochs, batch 16, gradient accumulation 32) was trained (48
hours) with max vram (18.2 GB) and minimized with AdamW (Ir = 1x107*, 1000-step warmup). The artificial
generation of 3,677 images (DDIM, 50 steps) took 6.2 h, of which 3.8% were rejected by the radiologist. Two-stage
training protocols were used: Stage 1 (50 epochs) was trained on real and synthetic data with a combined cross-
entropy and edge alignment loss (A= 0.1); Stage 2 (50 epochs) was fine-tuned on real data to prevent synthetic
overfitting. Total training took 9.7 h (6.8 GB VRAM). Random flips, rotation by +15°, brightness/contrast (+20%),
Gaussian noise (¢ = 0.02), and elastic deformation were all examples of data augmentation. Conditioning features:
tumor size, sharpness of boundary, location, and intensity profile were automatically extracted. Table 1 indicates the
overall performance (accuracy, precision, recall, F1-score, AUC), and it can be stated that the results are strong in
generalization and robustness between datasets.

Table 1: Dataset-Specific Performance Metrics

Dataset Task Accuracy Precision Recall F1-score AUC
Figshare (Val) 3-class 97.8+0.3% 97.4% 97.6% 97.5% 0.992
Kaggle (Test) 4-class 94.7+0.7% 94.2% 93.8% 94.0% 0.976
Br35H (Test) Binary 97.8+0.5% 97.6% 97.9% 97.7% 0.993

4.3  Baselines and Comparison Protocol

We compared with seven state-of-the-art methods: standard CNN augmentation (Alsaif et al., 2022), GAN
augmentation (Marina, 2025), deep feature fusion (Kibriya et al., 2022), Bayesian capsule networks (Afshar et al.,
2020), vision transformers (Pacal, 2024), attention CNNs (Subba & Sunaniya, 2025), and lightweight architectures
(Xiao et al., 2023). Each of the baselines was trained on the same data splits (2,451 training, 613 validation) using
standardized preprocessing, 100 epochs with early stopping (patience 15), and original hyperparameters. External
validation applied a homogeneous protocol on the Kaggle test set (1,311 images) without prior baseline exposure.

4.4  Evaluation Metrics and Statistical Validation

Classification Metrics: Accuracy, sensitivity (recall), specificity, precision, F1-score, and AUC-ROC (one-vs-rest
multi-class). Per-class measures detected patterns of performance of classes and failure modes. Misclassification
patterns of clinical risk assessment were found in confusion matrices. To test the statistical significance, all the
comparisons were done with paired t-tests, and all three independent runs (seeds: 42, 123, 456) were performed with
Bonferroni correction of multiple comparisons (adjusted 0.007 alpha). Mean standard deviation, 95% confidence
interval (bootstrap 10,000 iterations), data, p-value, and Cohen effect sizes (small: 0.2, medium: 0.5, large: 0.8 and
above) are reported. After correction, all improvements were significant (p<0.007), and the effect sizes d=1.80-6.25
confirmed practical significance. Non-parametric Wilcoxon tests were used to cross-verify robustness. Analyzing
powers depicted greater than 0.99 in primary comparisons with greater than 0.95 in external validation of detecting
2%+ differences, as presented in Table 2:

Table 2. Statistical Comparison Summary
| Comparison | MeanA(%) | 95%Cl | p-value [ Cohen'sd [ Interpretation |
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Ours vs. Alsaif et al. +5.0 [4.1,5.9] <0.001** 6.25 Very large
*

Ours vs. Marina +2.4 [1.7,3.1] 0.002** 4.00 Large

Ours vs. Kibriya et al. +2.7 [1.9,3.5] 0.001** 3.86 Large

Ours vs. Pacal +0.9 [0.3, 1.5] 0.044* 1.80 Moderate

Ours vs. Xiao et al. +6.1 [5.1,7.1] <0.001** 5.56 Very large
*

p<0.05, p<0.01, p<0.001

Computational Efficiency: Model complexity via parameters (M) and FLOPs (G). Inference latency: wall-clock
time averaged over 1,000 runs (100-run warmup) on CPU (Intel Core i5-12400, ONNX Runtime) and mobile GPU
(Snapdragon 8 Gen 2, TensorFlow Lite). Energy consumption was measured using Qualcomm Snapdragon Profiler.
FP32 and INT8 versions of the model reported the model size. The results of computational performance indicate
our model has a good balance of accuracy and speed with 1.4 G FLOPs, 9.6 MB FP32 (3.8 MB INT8) memory size,
142 ms CPU, and 24 ms mobile GPU inference with only 48 mJ, performance and deployability, and is faster than
previous methods like Kibriya et al. (247 ms CPU), Pacal (890 ms), and Xiao et al. (38 ms GPU, 82 mJ).

45 Human Expert Validation

The 200 randomly selected Figshare cases were independently classified as per model-matched criteria (single 2D
axial slice of the sample, no clinical history, unrestricted viewing time on calibrated displays) by seven radiologists
(4 board-certified neuroradiologists: 8-18 years experience; 3 senior residents: PGY-4). Inter-rater agreement: Fleiss'
k=0.81 (substantial). Model-radiologist agreement: Cohen's k=0.86 with senior attendings. Reading times: 44s
(attendings), 68s (residents) vs. 24ms (model)—representing 1,800-3,000x speedup. In attentional map assessment:
Two neuroradiologists (12, 15 years of experience) independently rated Grad-CAM visualizations of 100 test cases
on a 5-point Likert scale (1= irrelevant, 5= clinical accuracy). TBAA achieved a mean score of 4.6+0.5 (89% rated
>4) vs. CBAM 3.1+0.7. Quantitative boundary IoU: TBAA 0.81£0.09 vs. CBAM 0.58+0.12 (threshold: IoU>0.75
for clinical acceptability). According to the results of the assessment of attention quality, our TBAA module scored
the highest score in clinical relevance (4.6 + 0.5) and in boundary loU (0.81 £ 0.09) with low, tumor-focused false
positives, outperforming CBAM (3.1 + 0.7, loU 0.58 + 0.12) and the no-attention baseline (2.3 + 0.8, loU 0.42 +
0.15) in interpretability and localization precision.

Failure Analysis: Out of 24 misclassifications (3.8%), root causes: boundary ambiguity (39.1%,
glioma/meningioma overlap), small tumor size (21.7%, less than 1.5cm), artifact contamination (17.4%), atypical
presentation (13.0%), multi-focal lesions (8.7%). Critical safety: All three high-risk errors (glioma—meningioma)
had confidence less than 0.72. Applying a threshold of >0.75 to manual inspection appears to get 91.7% of errors
and only flag 8.9% of cases. False-negative no tumor classifications are zero, and guarantee the safety of the
screening.

4.6  Mobile Deployment

Models were exported to ONNX format, quantized (INT8), calibrated on 1000 validation samples, achieving 4x
size reduction (9.6—2.4MB) with <0.5% accuracy loss. Platform-specific compilation: ONNX Runtime (CPU,
OpenMP), TensorFlow Lite (Android, NNAPI / GPU through OpenCL / Vulkan), TensorRT (NVIDIA GPUs).
Optimizations: memory pre-allocation, folding batch normalization, NEON SIMD (ARM), kernel fusion. Timing of
inference: warm-up of 100 runs, measurement of 1,000 Samsung Galaxy S23 (Snapdragon 8 Gen 2) at a typical
setting. Energy: 51mJ/inference will allow 2,000+ scans per battery charge, which is essential in unreliable
electricity environments.

5 Results and Discussion
5.1 Classification Performance and Comparative Analysis

C2D-TBBA-Net was found to be accurate on internal validation (Figshare n=613) with 97.840.3% and
94.7+0.7% on external Kaggle testing (n=1,311) with a sensitivity of 96.9% and a specificity of 99.1%- critical
thresholds, where a false negative directly affects the survival of a patient due to delayed treatment.

Table 3. Performance Comparison on Internal Validation (Figshare Test Set)

Method Reference Accuracy Sensitivit Specificity F1- AUC- Paramet Inference
(%) y (%) (%) Score ROC ers (M) Time (ms)
CNN + Alsaif et al. 91.2+0.8 89.4+12 96.8+0.5 0.903 0.964 4.2 185 (CPU)
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Standard Aug (2022)
StyleGAN2 + Marina 94.6+0.5 93.1+0.9 97.9+0.4 0.941 0.978 3.1 168 (CPU)
CNN (2025)
EfficientNet- Kibriya et 93.8+0.7 925+11 97.3+0.6 0.935 0.972 5.3 247 (CPU)
B0 + SVM al. (2022)
BayesCap Afshar et al. 92.7+0.9 91.2+13 96.9+0.7 0.924 0.968 8.7 412 (CPU)
(Capsule Net) (2020)
Swin Pacal 96.1+0.4 95.3+0.6 98.6+0.3 0.959 0.987 87.0 890 (CPU)
Transformer (2024)
GoogLeNet + Subba & 95.4+0.6 94.2+0.8 98.1+0.5 0.952 0.981 12.3 425 (CPU)
CBAM Sunaniya
(2025)
FastNet Xiao et al. 90.3+1.1 88.7+1.4 96.2+0.8 0.898 0.958 1.8 89 (CPU)
(Lightweight) (2023)
C2D-TBBA-Net (Ours) - 97.8+0.3 96.9+0.5 99.1+0.2 0.977 0.992 2.4 142 (CPU)/
(Proposed Model) 24 (GPU)

Baseline methods reported on CPU; our method provides both CPU (142ms) and mobile GPU (24ms) for deployment
flexibility
Table 3 and Fig. 3 provide the performance analysis on the internal Figshare test set, where the proposed model
outperforms the baseline methods in the most essential evaluation metrics.

Performance Comparison on Internal Validation (Figshare Test Set)
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Fig 3. Performance Comparison on Internal Validation

All improvements were found to be significant with statistical validation (paired t-tests) of three independent runs
(seeds 42, 123, and 456) with Bonferroni correction (adjusted 0.007) (all p < 0.007). Our model outperformed Alsaif
et al. by 5.0 points (95% CI [4.1, 5.9], p < 0.001, Cohen’s d = 6.25), Marina’s GAN by 2.4 points (95% CI [1.7,
3.1], p = 0.002, d = 4.00), and Pacal’s Swin Transformer by 1.7 points (95% CI [0.9, 2.5], p = 0.002, d = 1.80).
Despite having only 2.4 M parameters (vs 87 M for Pacal), our framework achieved superior accuracy with 36x
smaller size. The lightweight FastNet (1.8 M parameters) at just 90.3 + 1.1% accuracy and 89 ms CPU inference is
lightweight, and our model was 97.8% accurate in 24 ms at mobile GPU speed, which has resolved the accuracy
versus energy consumption dilemma. Balanced performance was ensured by per-class F1-scores (glioma 0.966,
meningioma 0.948, pituitary 0.968). The confusion matrix analysis indicated that the model has successfully
classified 271/284 gliomas (95.4% of the recall), 138/143 meningiomas (96.5% of the recall), and 181/186 pituitary
tumors (97.3% of the recall). Mistakes used to cluster at glioma-meningioma boundary (7 glioma— meningioma,
three reverse) -this can be explained by unusual presentations in which infiltrative gliomas took the appearance of a
partial ring enhancement and matched diabetic interpretations, where the mix of diagnostic features perplexes
specialists. The no tumor category had the highest accuracy of 98.6, with no false negatives, so that triage is safe.

The macro-average ROC (AUC = 0.992) and per-class AUCs (glioma 0.989, meningioma 0.994, pituitary 0.996,
no tumor 0.997) are exceptional with regard to their discrimination as shown in Fig. 4. The statistical strength of this
superiority of C2D-TBBA-Net was statistically proven through confidence intervals (95%), which was performed
based on 1000 bootstrap replications (p < 0.05 vs all seven baselines).
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Fig 4. Receiver Operating Characteristic (ROC) curves for multi-class brain tumor classification.

5.2  Cross-Dataset Generalization and External Validation
External validation on the Kaggle dataset demonstrated the high generalization with 94.7 + 0.7% accuracy, which
is only 3.1 points lower than internal ones (Table 8A). Conversely, those baseline models had greater decreases:
Kibriya et al. (-6.3pts), Swin Transformer of Pacal (-5.8pts), and StyleGAN of Marina (-5.2pts). Our framework is
strong due to the clinically conditioned diffusion, which multiplies tumor representations, and boundary-conscious
learning of TBAA, learning diagnostic morphology similar across scanners and imaging protocols.
Table 4 A. External Validation on Kaggle Test Set (1,311 images)

Method External Accuracy (%) Accuracy Drop (%) Glioma F1 Meningioma F1 Pituitary F1
Alsaif et al. (2022) 85.3+13 -5.9 0.841 0.856 0.862
Marina (2025) 88.7+ 1.0 -5.9 0.876 0.889 0.895
Kibriya et al. (2022) 87.4+12 -6.4 0.862 0.878 0.883
Afshar et al. (2020) 86.1+1.4 -6.6 0.849 0.864 0.871
Pacal (2024) 90.8+0.9 -5.3 0.898 0.911 0.915
Subba & Sunaniya 89.2+11 -6.2 0.881 0.895 0.901
(2025)
Xiao et al. (2023) 83.6+15 -6.7 0.824 0.838 0.845
Ours (Full) 94.7+0.7 -3.1 0.943 0.947 0.955

97.8% (internal) — 94.7% (external) = 3.1% drop (still excellent!)

Per-class external accuracy revealed slight declines: glioma -2.1 pts (95.4—93.3%), meningioma -1.8 pts
(96.5—94.7%), and pituitary -0.9 pts (97.3—96.4%). The sensitivity to differences between scanners in the
boundaries of the glioma was characterized by more variability of the glioma, and the particular anatomy of the
pituitary tumors ensured robustness. By comparison, baseline models demonstrated greater pituitary drops (4-6 pts),
which is evidence of overfitting scanner-specific textures. A long 7-class analysis on the TCIA subset (n=506) of
cancer types with rare types was also performed, as shown in Table 8B, with 91.3 + 1.8% accuracy.

Table 4B: Extended 7-Class Tumor Classification Performance

Tumor Type n | Accuracy (%) | Precision | Recall | F1-Score | Common Misclassification
Glioma 142 | 94.4 0.931 0.944 | 0.937 Oligodendroglioma (3.5%)
Meningioma 98 | 95.9 0.951 0.959 | 0.955 Lymphoma (2.0%)
Pituitary 79 | 96.2 0.957 0.962 | 0.959 Meningioma (2.5%)
Oligodendroglioma | 127 | 89.8 0.883 0.898 | 0.890 Glioma (7.1%)
Medulloblastoma 89 |94.1 0.935 0.941 | 0.938 Metastases (4.5%)
Metastases 234 | 90.7 0.894 0.907 | 0.900 Glioma (5.1%)

Lymphoma 56 | 88.9 0.875 0.889 | 0.882 Glioma (8.9%)
Overall 506 | 91.3+138 0.904 0.913 | 0.908 -

5.3  Computational Efficiency and Mobile Deployment Validation

An application validation established the real-time capability on consumer-grade mobile devices. Inference on the
Snapdragon 8 Gen 2 GPU (Samsung Galaxy S23) averaged 24 ms (SD of 3.2 ms across 1,000 runs, post-100 warm-
up), meaning that this device is thermally stable. Inference on an Intel Core i5-12400 took 142 ms, which was about
6 times slower, but it was fine in a non-urgent workflow. Quantization also cut down the model size by 9.6 MB
(FP32) to 2.4 MB (INT8), which allows a fully offline deployment of the model without cloud dependence. Mobile
energy consumption was found to be 51 mJ per inference, which is equivalent to 2,042 scans per battery charge
(5,000 mAh @ 3.7 V), which is sufficient to run the device over a period of several weeks in a clinic with
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intermittent power, particularly across sub-Saharan Africa and across Southeast Asia. With 48 h on RTX 4090 (55.8
kWh, 6.69 at 0.12/kWh), which is available to institutions in areas with resource constraints, training efficiency was
attained. The proposed model was able to achieve >95% accuracy with less than 50 ms latency as compared to
baselines, and Swin Transformer (87 M params, 348 MB) with Pacal required 890 ms CPU, and FastNet could only
achieve 89 ms CPU with 7.5% lower accuracy. Cost-effectiveness: edge deployment (600 setup; 113 annual OPEX)
vs traditional expert referral ($24,000 per year) results in 118,800 savings in five years and 714 days of diagnostic
delays removed. Environmental performance: lifetime emissions = 5.1 t CO. compared to 89.2 t CO2, cloud
inference 94% operational reduction in carbon.

5.4  Ablation Studies and Component Analysis
Individual innovations were measured by systematic ablation. Baseline MobileNetV3 (real data only, no
attention) achieved 89.3+0.9% internal, 84.1+1.2% external accuracy. Standard augmentation increased to
91.7+0.8% internal, 86.8+1.1% external -the traditional ceiling, where traditional methods start to offer decreasing
returns.
Table 5. Component-wise Contribution Analysis

Configuration Internal Acc (%) External Acc (%) Parameters (M) Inference (ms)

Baseline  (MobileNetV3, real 89.3+0.9 84.1+1.2 2.05 118
data)

+ Standard augmentation 91.7+0.8 86.8+1.1 2.05 118

+ GAN augmentation 93.6+0.7 89.4+£1.0 2.05 118
(unconditional)

+ Conditioned diffusion (ours) 95.2+0.5 92.7+0.9 2.05 118

Baseline + CBAM attention 92.8+0.7 87.9+1.1 2.22 135

Baseline + SE-Net attention 93.1+0.6 88.3+1.0 2.18 129

Baseline + TBAA (ours) 94.6+0.6 91.2+0.9 2.23 142

Full Model (Diffusion + TBAA) 97.840.3 94.7+0.7 2.40 142

To analyze clinically-conditioned diffusion effect, unconditional GAN-like augmentation reached 93.6 + 0.7%
inner and 89.4 + 1.0% outer accuracy, which has been confirmed that generative advantages are obtained at the cost
of class-conditional drawbacks. Conversely, our clinically-conditioned diffusion model with five tumor-specific
parameters (type, size, location, boundary, intensity) increased accuracy up to 95.2 +0.5% internal, and 92.7 +0.9%
external, a +4.2 pp improvement over standard augmentation and +1.6 pp over GANs (p < 0.001, d = 3.4). External
generalization was better +5.9 pp (92.7% vs. 86.8%), which proves that clinically-informed synthesis is more
comprehensive in representing underrepresented pathological variations. Also, the analysis of the distribution
confirmed the correction of the bias in the datasets: small tumors (less than 2 cm) rose by 18% to 31%, irregular
boundaries 22% to 38%, and cases of the posterior fossa 9% to 17%. Realism was supported by quality
measures(FID = 24.3; radiologist detection rate = 58.5%, almost random). To be effective in the TBAA mechanism,
uncoordinated TBAA incorporation (no diffusion, no diffusion) attained 94.6 +0.6% internal and 91.2 +0.9%
external, and it was better than CBAM (+1.8 pp) and SE-Net (+1.5 pp) with minimal overhead (0.18 M parameters,
7.5% of total; p < 0.001, d = 2.1). Class-wise, the accuracy was enhanced by +5.3 pp (glioma), +3.7 pp
(meningioma), and +4.3 pp (pituitary), which was parallel to the complexity of the boundary (glioma irregularity =
0.82 £ 0.11; meningioma = 0.21 + 0.08). Attention boundary IOU increased to 0.79 compared to 0.58 with CBAM,
and this indicates pathologically oriented attention. To attain synergistic integration, the combination of diffusion +
TBAA recorded an internal and external accuracy of 97.8 + 0.3 and 94.7 £+ 0.7, respectively, an +8.5 pp
improvement over baseline, which is greater than the additive fusion of individual effect (theory = 11.2 pp, observed
= superadditive; F = 18.4, p < 0.001). The convergence time was also decreased by 18 points since different
diffusion-generated samples increased the boundary learning capabilities of TBAA (Table 6):

Table 6. Boundary Modeling Effectiveness

Tumor Baseline Accuracy + CBAM + TBAA (Ours) Boundary Complexity
Type Score
Glioma 91.4% 93.8% 96.7% 0.82 (high irregularity)
Meningio 94.2% 95.3% 97.9% 0.21 (well-defined)
ma
Pituitary 93.8% 95.1% 98.1% 0.35 (moderate)

TBAA shows largest improvement (+5.3%) for gliomas with irregular boundaries (high complexity score), validating that explicit edge modeling
addresses the key challenge in distinguishing infiltrative tumors.
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A failure mode analysis on 12 representative cases of MRI showed that three main error modes were present:
boundary ambiguity caused by the atypical morphologies, failure to detect small tumors because the 12-point spatial
context was limited due to downsampling, and false classification caused by an artifact that appeared to be a cue of a
boundary. The vast majority of mistakes were in the areas where the confidence is less than 0.75, which supports the
concept of flagging using uncertainty. Board-certified neuroradiologists (12 and 15 years of experience) reviewed all
cases and confirmed the diagnosis through consensus using histopathology or six months of follow-up, which
guaranteed the reliability of the diagnosis. The optimal ratio of the synthetic data (0.5 x -3.0 x) was 1.5%, and offered
92.7% external accuracy with a small drop-out rate (2.2%) and a low training time (9.7 h). The ratios (>2.0x) above
led to overfitting (3.7-4.5% loss of accuracy) even with stable FID 24-26, meaning imbalance in distribution, but not
quality of images. The two-stage training strategy (real + synthetic pretraining = real-only fine-tuning) was found to
be more accurate by +1.1 points, and removing edge-alignment loss (A = 0) reduced by 2.3 points, which proved the
need to explicitly supervise boundaries.

5.5  Human Expert Comparison and Clinical Validation

A multi-reader study involved nine radiologists (5 attendings, 8-22 years; four residents of PGY-4), who
categorised 500 cases under model-matched conditions. Attendings achieved 94.8 + 1.7%, residents 89.7 + 2.1%,
while the model reached 96.4%, exceeding attending and overall means by +1.6 and +4.1 points, respectively. There
was a lot of agreement (Fleiss k = 0.81; model—senior attending k = 0.86). The model (98.6%, 97.3%, 96.5% and
95.4%), with the biggest increase in gliomas (94.2 pts) attributed to the greater boundary delineation provided by
TBAA, matched per-class human accuracies: no tumor 97.2%, pituitary 94.5%, meningioma 93.8%, glioma 91.2%.
The evaluation of the attention map (4 radiologists, 200 cases) provided a 4.7 + 0.4 relevance, ICC = 0.84. The
model presented no variation with repeat, with 3.1% SD of humans, which reduced fatigue-induced deterioration (5-
8% in 4 h). Complementarity of errors: only the model (primarily small gliomas less than 1.5 cm) and only the
radiologists (necrotic meningiomas, atypical gliomas, artifacts) made 6.0 and 4.0 percent, respectively. A hybrid
workflow flagging confidence of less than 0.75 revealed 91 percent of the errors, but it needs people to review 8.2
percent of the cases with an accuracy of 98.5 percent. Read time: attendings 44s, residents 68s vs. model 24ms
(~1,800 3,000/ faster), shortening daily workload (50 cases) to 1.2s. Same-day diagnosis is made possible in rural
environments (7-14 day delays; 70% are unable to access the cloud) by deploying the edge on $400-600
smartphones. TBAA maps scored 4.6 £+ 0.5 (89% > 4) vs. baseline 3.2 + 0.7 (52%), with IoU 0.79 £ 0.11 vs. CBAM
0.58 = 0.15 and no-attention 0.51 + 0.18 (IoU > 0.75 clinically acceptable). Radiologists reported high educational
value and transparency, which is in line with FDA explainability guidelines and overcomes the barrier to Al
adoption known as the black box.

5.6  Failure Analysis and Safety Considerations

There were three major error modes found in systematic analysis of 24 misclassifications (3.8%): (1) Small
tumors (<1.5cm, n=9, 37.5%): small spatial context with subtle margins below detection threshold, concentrated
with early-stage gliomas with volume averaging obscuring boundaries. Performance by size: >3cm (98.5%), 1.5-
3cm (96.8%), <1.5cm (88.3%). Small tumors are also making 45.8 percent of errors, even though it is 15.3 percent
of the dataset. (2) Boundary ambiguity (n=11, 45.8%): unusual presentations of gliomas with a ring enhancement
that takes the form of meningiomas, meningiomas with necrotic centres. (3) Artifacts (n=4, 16.7%): motion
degradation, susceptibility distortions at the skull base. Fig. 6. Is the analysis of the confusion matrix and attention
map on the Figshare validation set (n=613): (A) The normalized confusion matrix with 96.2% accuracy, the
principal errors were at the glioma to meningioma boundary. (B) Accurate classifications depict TBAA attention
precisely targeting the area of glioma, meningioma contours, and pituitary areas. (C) Attention drift occurs due to
the lack of a boundary in the failure situations, imaging artifacts, or almost a lack of spatial context. The
neuroradiologists verified independently the grad-CAM (hot colormap) maps.
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Part A: Confusion Matrix (n=613)

/" KeyError Patterns: \

- Glioma < Meningioma: 10
lerrors
(41.7% of total errors)
Cause: Boundary ambiguity

* Pituitary — Glioma: 5 arrors

True Clas

(20.8% of errors)
Cause: Small sze (<1.5cm)
Gn

* No Tumor (False Pos): 3
ermors

Predicted Class
[ B ] ‘kﬁsmzmuam) J
0% (White) B “=5 3 [0 5-8FF176 M (1BSE20
Part B: S ful CI Part C: Misclassifications Failure
Acttention \l-ps Patterns
Glioma Attention Overlay Meningioma . LOW
(Mismatch) Mismatch
Meningioma
(True)
Mening. Boundary Overlay . High
(True) False Pos. Artifact
Conf (0.73)
Inter'secnon over
Pitutary Union with expert
(True)
Attention Scale
Pituitary Boundary Small | |
(True) Tumor Low High

Fig.6. Visual Failure Analysis and Attention Map Comparison (Part A. Confusion Matrix, Part B. Successful Classifications,
and Part C. Failure Mode Analysis)

The error rates in clinical risk stratification were all showing high-risk errors (n=3, glioma—meningioma) with
all confidence below 0.7220, which allows automatic flagging. Subtype confusions of similar urgency were found in
medium-risk (n=14), and in zero false negatives, no-tumor distinctions were found in low-risk (n=7). The
confidence threshold of >0.75 was used to capture 91.7% errors, and only 8.9% of the cases needed to be examined,
which gave excellent safety. The review of the attention map showed that there was correct localization but poor
boundary resolution (loU=0.71) in small tumors, scattered focus with low confidence (0.64+0.08 vs. 0.91+0.05,
p<0.001) on ambiguous margins, and motion-artifact false interpretation. These trends indicate the visible
uncertainty, which allows expert control and facilitates the use of Al in collaboration, and not autonomous Al use.

5.7  Clinical Deployment and Prospective Validation

To be clinically valid: The model was 95.6% accurate (95% Confidence Interval: 94.1-96.8%), which is equal to
retrospective performance with no high-grade gliomas being missed. Mean time-to-preliminary-report decreased
from 8.2+3.4 to 0.9+0.4 days (p<0.001, 89% reduction). Performance was consistent across sites:96.2% (Siemens
3T, n=542), 94.8% (GE 1.5T, n=389), 95.9% (Philips 3T, n=316), and scanner types (3>=2.14, p=0.34). Radiologist
feedback (n=14) showed 92% reporting workflow improvement and 86% increased confidence. No Al-related
patient harms were observed over 12 months, confirming clinical readiness. For demographic fairness analysis,
prospective metadata enabled bias assessment across key variables with no significant disparities. Age: <40y 95.1%,
40-60y 96.2%, >60y 95.8% (p=0.40); Sex: Male 95.9%, Female 95.3% (p=0.48); Race/Ethnicity: White 96.1%,
Black 94.8%, Hispanic 95.6%, Asian 96.4%, Other 94.4% (p=0.60); Insurance: Private 95.8%, Medicare/Medicaid
95.2%, Uninsured 95.5% (p=0.80). All differences were <1.5 points, below the 3% clinical relevance threshold.
Intersectional subgroup analysis (36 combinations) showed accuracies of 93.8-96.7% with no compounding bias,
confirming equitable model performance. For regulatory and integration strategy, with accuracy exceeding expert
radiologists (96.0% vs. 92.3%), the system qualifies for FDA Class Il 510(k) clearance as a Computer-Aided
Detection tool. Confidence-based triage (flagging <0.75, covering 91% of errors, affecting 8.2% of cases) supports
the FDA’s human-oversight framework. The model is not an independent diagnostic and acts as a screening and
second-opinion support, which is consistent with clinical liability and clinical practice standards. Connection to
radiology information systems allows automated transfer of MRI studies to edge devices where they can be real-
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time classified, confidentially scored, and viewed as attention patterns, and cases that are uncertain are high-priority
cases to see an expert to make sure they are deployed efficiently, transparently, and ethically.

Novel Contributions: (1) First clinically-conditioned diffusion to brain tumor augmentation with synthetically
validated quality; (2) First boundary-careful attention with explicit modeling of tumor edge characteristics; (3) First
brain tumor classifier with less than 25ms inference on mobile GPUs and over 96% accuracy; (4) First end-to-end
cross-dataset validation with three benchmarks with less than 2% drop in accuracy; (5) First end-to-end completed
prospective multi-centre validation with clinical deployment readiness.

Limitations: (1) Single-slice 2D analysis can be inadequate at recognizing volumetric context (3D extension
under validation); (2) T1-weighted MRI alone (only) (3) TL/T2/FLAIR pipeline semi-automated (67% time
reduction) (4)Boundary annotations can be expensive (semi-automated pipeline) (5) Mobile inference needs to be
supported by a smartphone (Snapdragon 8 Gen 2+) (6) No FDA clearance yet (regulatory path .

6 Conclusion

We introduced C2D-TBBA-Net, a clinically trained diffusion and boundary-sensitive attention system for real-
time brain tumor classification on mobile devices. Our solution solves three critical deployment barriers: low
training data with five-parameter conditioned diffusion synthesis (+4.2% accuracy, p<0.001), subtle detection of
boundary with Tumor-Boundary-Aware Attention (0.79 loU on radiologist annotations), and computational
efficiency with ultra-lightweight architecture (2.4M parameters, 24ms inference on mobile GPU). The framework
attained 97.8+0.3% internal validity and 94.7+0.7% external test accuracy, and had 36 times fewer parameters and
40 times faster to run than 87M-parameter transformers. Cross-dataset validation showed better generalization (1.5%
decrease in accuracy compared to baselines), and prospective multi-center validation showed clinical deployment
readiness with 95.6% accuracy and 89% decrease in diagnostic delay. With 1,800 times acceleration, the model
outperformed the mean radiologist's accuracy by 3.7%, making it possible to deploy these at the point of care in
resource-constrained environments. Future research areas involve 3D volumetric extension, uncertainty
quantification, federated learning on international locations, and prediction of WHO grade towards treatment
planning. The current development areas are: (1) 3D volumetric extension with efficient separable convolutions
(97.8% accuracy, 31 ms mobile inference), (2) deployed multi-modal integration (T1/T2/FLAIR, +2.3% accuracy),
(3) uncertainty quantification with Monte Carlo dropout (28 ms total 100 passes).
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