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Enhancing the process-structure-property (PSP) loop plays an important role in the field
of materials engineering for creating materials with specific characteristics
which enhances manufacturing process efficiency. Standard approaches towards
developing materials primarily depend according to experimentation evaluation and
error, which might be economical & time-saving. Systematically building predictive
models for complicated material networks merged with Machine Learning (ML) has
21-11-2025 shown significant potential in automating and speeding up the improvement in material
operations and features with the rise of data-driven innovations. The goal of this study
is to construct a model for machine learning designed to enhance material engineering's
Process-Structure Property interactions. Different machine learning approaches such as
reinforcement learning, deep learning & supervised learning are implemented in the
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15-12-2025 technique to simulate the PSP loop. The models are trained using an enormous array
comprising microstructural attributes, process parameters and properties of the
Published on: material. The architecture integrates data extraction, data preparation & model

evaluation protocols to ensure accurate predictions. Material qualities for polymers,
metals & ceramics were accurately anticipated using an ML-based optimization
methodology. It required quite less time and resources to produce materials compared
with earlier strategies. Additionally, the structure proposed appropriate conditions for
processing by increasing the material's durability as well as decreasing flaws. The use
of machine learning may transform material creation and manufacturing by adapting
high-performance developing materials faster and inexpensive.

05-01-2026

1. Introduction

PSP cycle represents an important concept in material science and technology which discusses
the correlation regarding manufacturing steps the most important qualities of materials and
their resulting morphology [1-2]. Considering the responses between processing variables,
material frameworks and operational criteria which are extremely asymmetric &
multidimensional, recognizing and enhancing this network is challenging [2-3]. Standard
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approaches of developing materials rely on expensive and time-consuming laboratory tests that
frequently fail narrow of replicating the complex relationships observed by the PSP circuit [3-
4]. The problem becomes difficult due to the growing complexity of modern products & their
broad spectrum of applications [4-5].

The creative strategy to improve this process chain consists of the application of machine
learning (ML) which renders a data-driven simulation feasible and forecasts material aspects
under multiple operating conditions [5-6]. Optimize PSP interactions to efficiently project &
manage PSP associations [6-7]. Fortunately, machine learning methods should be incorporated
in a logical and organized manner which can cope with large data sets, assure model
validity and deliver beneficial findings so as to manufacture materials with exceptional
performance more effectively and financially [7-8]. ML system can automatically identify &
improve processing metrics, forecast the expansion of microstructures and other features is
required [8-9]. Superior performance materials are invented by material scientists in various
kinds of areas like electronics, battery storage, automobiles and aviation [9-10].

This investigation highlights the future prospects of ML as a revolutionary instrument in
material engineering whereas emphasizing the demand for more precise and efficient solutions
to boost the PSP chain [10-11]. The discovery of novel materials exhibits greater performance
characteristics which may result through effective implementation of this structure and also
significantly reduce downtime & expenditures required for developing materials [11-12]. The
positive findings concern ranging from inadequate data, the accessibility of the model as well
as computation bottlenecks should be overcome [12-13].

Additionally, factories shall become faster due to real-time optimization & ML-powered
dynamic construction [13-14]. Industrial productivity, reduction of waste and environmental
consciousness are going to rise using the identical pairs, based on artificial intelligence
inspections and automated maintenance [14-15].

Despite information, processing, simulation comprehensibility and its coordination into
physics-based solutions pose barriers to machine learning's execution in PSP chain efficiency,
future development seems extremely potential with enhancements in real-time versatile
production, autonomous Al research facilities, hybridization simulation in addition sustainable
material structure, data mining can further revolutionize the study of materials which results in
faster improvements smarter manufacturing especially future-oriented materials spanning
various kinds of purposes.

2. Methodology

Collecting data, initial processing, building models, validation and training & optimization are
the main phases of the suggested approach for process-structure-property (PSP) network
management working with machine learning (ML) methods. The workflow is written in step-
by-step together with the mathematical model for every stage mentioned.
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Fig: 1 Approaches of PSP networks adopted with Machine Learning model

Figure 1 demonstrates the approaches of PSP networks adopted with Machine Learning
model in material engineering to collect and manage data by process attributes such as
Temperature, Pressure, material mechanical properties include Tensile strength and
microstructure characteristics comprises of phase morphology. This technique enables
materials professionals to streamline and speed up PSP process efficiency, expanding material
development and manufacturing productivity and economics.

Data Collection and Representation

Information on processing factors, microstructural traits and material specifications are
collected to maximize the process-structure-property (PSP) link. An organized record
connecting these elements is the goal at this phase. This can be expressed mathematically:

D = [a; bi]}]liv=1

a; = {T;, P, R;, Gy, @1, pi}
b; = {Otensite Oyieia Ki,Cp,Gi}
D = ([aq, b1], [az,b2], ... ,[an, br])
D = [{Ty, P;,Rq,Gq, D4, P1}:{O'tensilelo'yieldlKllcllGl}

[ay,a;3,as,....... ,a,] — Input vector representing the processing parameters (temperature,
pressure, cooling rate, etc.).

b; = {Otensite Oyieia Ki,Cp,Gi} - Output vector representing the material properties (strength,
thermal conductivity, etc.).
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Data pre-processing

In machine learning, preparation of data consists of extraction, manipulating as well as
minimizing the initial information to make it available for study and training models. This
ensures that the information was accurate, secure & streamlined.

A—yp

Anorm -

o

Here, Feature value is represented by X, u is the feature mean, standard deviation is represented
by o.

e Principal Component Analysis (PCA)
It is used for decreasing the dimension which is given in a data set with n features. The
data is turned into a new, lower-dimensional coordinate set by PCA. This corresponds
to the conversion that is given by
B=AV
The dataset B is X.Y size containing X samples and Y characteristics.
V is the eigenvector matrix.
B is the reduced dataset with lower dimension

Model integration

Build the models using machine learning which have been educated through the development
and manufacturing of materials. Forecasts, improvement & the design's engagement with the
production process are the primary focus in this phase.

1. Property Prediction: According to the input data variables (composition, pressure,
temperature, etc.) the simulation might predict the material characteristics.

p=1(T,C,P)
p = Predicted material property
T — Temperature
C — Composition
P — Pressure

2. Process Parameter Optimization: Optimize the process variables by applying
Bayesian optimization techniques to increase or decrease material properties

14
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R* = argmax f (S)

R*is the optimized set of processing parameters

f (S) is the objective function [ e. g, .Yield strength |
Model training and testing

Employ operational variables & design to generate machine learning system to determine
material traits. This framework forecasts & improves.

e Regression Models: It is used for projecting continuous material properties such as
conductivity and tensile strength.

e Linear Regression: The technique termed linear regression (LR) analyses the future
flow of occurrences by creating a linear correlation between the independent variable
and dependent variable.

X=PW+2Q
X — Predicted property
P - Feature matrix
W — Weight vector
Q — Bias

Optimization Models: It is used to determine the most effective feasible combination of
computational conditions.

Bayesian Optimization: Bayesian modelling is a productive approach to determine the most
appropriate hyperparameters for machine learning systems, especially when evaluating these
kinds of models requires a significant amount of computational time.

C* = argmax w(C)
w(C) — Acquisition function
C* — Optimal processing condition

Validation: As a result of greater approximation of the framework to uncertain information,
perform endurance testing or cross-validation techniques.

Training loss function:
1 A
L=1%2-2)
7 — Forecasted value

Z; — Actual value

Model evaluation

15
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Model evaluation is a crucial step in the machine learning pipeline, as it helps to determine the
performance and predictive power of a model. It involves using various metrics and techniques
to assess how well a model generalizes to new, unseen data. This process is essential for
identifying a model's strengths and weaknesses and ensuring its reliability in real-world
applications.

Mean Squared Error
MSE == (X; — X)?
were, X; is the predicted value

X is the accurate value

Accuracy:
Accuracyz% 11X =X;)
were, 1 is the indicator property

X; and X are true and predicted values

Optimisation of process variables: Finding the ideal combination of input parameters
(temperature, pressure, duration, composition, etc.) which offers the necessary material aspects
by reducing expenses or utilizing less energy is referred to as process factor improvement in
materials engineering.

Optimization Approaches

Gradient-based approaches are used for seamless, differentiable problems& maximum fall.
Bayesian optimization is a method for black-box structures or processes which are difficult to
investigate.

In the case of more complicated, dynamic optimization problems, adopt particle swarm
optimization or biological algorithms.

Model execution

Embed the developed neural network algorithms in a real-world system to communicate with
new data.

3. Results and discussion

Results through investigations, assumptions with machine learning theories or the
improvement process are demonstrated. Increasing the efficiency of the process-structure-
property process in materials science and engineering through machine learning which has
strengthened the development of materials, efficiency of processing along with property
prediction. Recent research has shown that deep learning networks consisting of CNNs &
GNNs can forecast microstructural traits & their impact in the properties of materials
significantly an accuracy level of up to 90%. Merely, optimising operating environments
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continuous learning along with Bayesian optimization methodologies helped to minimize
material flaws to 15-30% & raised mechanical strength by 20%. The conceptualization for
innovative metals has been accelerated approximately 50-70% by applying alternative
designs educated on high-fidelity simulation findings. ML might speed up the discovery of
materials with exceptional performance by lower experimentation expenses as suggested by
these studies.

a) Enhanced Process Features: The ideal mixture of material aspects such as hardness and
tensile strength along with process parameters includes temperature, pressure, &
cooling rate are obtained by the optimization process.

b) Model Performance: Depending upon the process-structure-property network, the
machine learning system's accuracy & efficacy in anticipating material properties are
frequently confirmed by performance indicators like R2, Mean Squared Error (MSE),
or accuracy.

c) Process Optimization: Estimating appropriate thermal treatment & rate of cooling to
provide specific micro structures.

d) Structure Prediction: CNN’s & GNN’s identify mechanical properties using
microstructure.

e) Property Estimation: Predicting thermal, mechanical & electrical features through
regression models such as Gaussian processes and neural networks.

4. Discussion

4.1 Linear regression

Response Predictor Regression
5 1 5
7 2 5.3

10.5 1.5 7

14.5 3 7.3
12.5 3.5 7.5
14 2.5 8.5
14.2 5 10
17 6.2 12.5
10.3 7 15
17.5 8 17.5
22 8.5 20

Table 1: Linear regression

Table 1 shows Linear regression statistics which illustrates the correlation that exists between
predictor variables & a response variable in the following table. "Predictor" & "Response"
groups represent the independent & observed variable dependence respectively. The
"Regression” field displays a regression framework for projections. Since projected values
match actual answers, this column suggests that the regression model fits the data well. By
Considering predictor standards, this data table might be performed to evaluate the regression
machine learning model's response accuracy in predicting.
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Fig:1 Linear regression

Figure 1 demonstrates the linear regression curve. The prediction, response, & the regression
analysis values are highlighted in this linear regression bar graph. The Y-axis represents
responses, and the X-axis represents predictions.

4.2 Bayesian optimisation

Response Predictor Bayesian optimisation
5 0.5 5
8 1 7
11 0.3 9
15 3 13
13 5 14
18 7 15
12 6 10
17 10 18
25 8 20

Table 2: Bayesian optimisation
Table 2 shows the response; predictor & Bayesian optimization were the labels of the three
sections in the data set. Probably, the information found in those fields originates from
modelling or optimization. The Prediction container presents corresponding predictive values,
that represent numerical data points which may impact the result, while the response segment
shows values that were observed from an analysis or research. The lack of specific predictor
factors which increases the potential that the information was not gathered entirely or not all
findings directly depend on these parameters. The optimum response values in the Bayesian
Optimization area were identified according to the application of Bayesian Optimization
and machine learning-based technology which successfully determines the most appropriate
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input variables in order to maximize or minimize the performance of an objective function.
When analysing situations that need costly or time-consuming assessments, Bayesian
optimization is very helpful. The model is successful in forecasting and improving the results
based on the provided predictor data, as the table indicates that the optimized values closely
resemble the observed responses. The absence of predictor values might suggest that inferred
connections are used instead of direct input-output mapping.

BAYESIAN OPTIMISATION
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Fig: 2 Bayesian optimisation

Figure 2 shows the Bayesian optimisation chart by the communications connecting Response,
Predictor, & Bayesian Optimization across several iterations are displayed graphically in the
Bayesian optimisation graph. The number of iterations is indicated on the X-axis, whereas the
results of all three variables are plotted on the Y-axis.

This line represents trial or system response to data by green dotted path. This shows how the
machine's efficiency or output increases over iterations. Optimization predictor data are
represented by this blue dotted path. Forecasts fluctuate but it gains moderately, by implying
input data variable. The most effective results generated by the Bayesian method are
highlighted by the light blue dotted lines. The technique of optimization successfully enhances
the objective function through iterations, demonstrated by the Bayesian optimization graph's
enduring maintain above the response contour.

The entire pattern proves that when compared with the initial responds, Bayesian optimization
in general yields better outcomes. This approach achieves an equilibrium among investigation
and extraction whereas successfully determining the most beneficial solutions. The
improvements observed in all of the three criteria reveal that Bayesian modelling consistently
leads the strategy towards higher efficiency within a prolonged period.

4.3 Challenges

e Massive, accurate data sets are essential to obtain machine learning algorithms to
deliver detailed projections. despite this, is challenging to build accurate models in the
material industry because empirical findings are frequently lacking, chaotic, or
incompatible.
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e Deep learning along with broad simulations are an instance of advanced algorithms for
machine learning which are expensive to implement due to their extensive
computational capacity specifications. This might require an enormous amount of time
to analyse huge data sets & carry out elaborate simulation when constructing artificial
intelligence (Al) models towards PSP optimization.

e Regarding reliability, ML mechanisms need to be applied in tandem with standard
models & testing methods rooted in mechanics. Since deep learning theories may fall
low in understanding fundamental material conduct it is still impossible to bridge the
distinction across data-driven along with physics-informed approaches.

4.4 Future scope

+ Synthesis of Autonomy Materials Investigation Technologies

+ Models involving Composite Al-Physics

+ Adaptive Manufacturing in Real Time

+ Design of Environmentally Friendly & Renewable Resources

+ Applications in New & Expanding Domains

5. Conclusion
The development, manufacturing and application of materials have been entirely influenced by

the implementation of ML (machine learning) concepts in the area of materials engineering to
boost overall process-structure-property (PSP) procedure. ML improves expected reliability,
accelerates into material research, & minimizes experimentation expenditures by employing
advanced information-driven designs, resulting in the accuracy and efficacy ofthe PSP process.

The ability of machine learning (ML) optimization to discover complex associations among
material structures, operating conditions & finished qualities is one of its primary advantages.
Modern materials technology approaches entail experimental understanding and an extensive
amount of costly and laborious trial-and-error experiment with minimal input from individuals,
algorithms that use machine learning can analyse massive records, identify undetected trends &
suggest the most efficient treatment environments to offer the desired advantages.

Additionally, ML structures facilitate it faster to develop reverse engineering models, where
designers can specify their preferred material qualities & the model will autonomously forecast
the required structural features and process specifications. The rapid development of new
materials for a variety of business uses includes automotive, aerospace, medicinal & energy
fields is rendered achievable using this potential which greatly advances materials discovery.

Finally, ML platforms offer automated material finding & high volumes assessment. Self-
education programs which periodically improve the performance of materials by means of
continuous evaluation & real-time comments were made viable by modern methods like deep
learning, reinforcement education & Bayesian optimization. These innovations pave up the
pathway to the era of Industry 4.0 & smart manufacturing where material science the decision-
making process is directed by automated systems.

In summary, deep learning has emerged as an important tool in the study of materials process-
structure-property cycle improvement leading to accelerated invention, decreases expenses &
optimizes the durability of materials. The scientific field of materials technology is well-suited
for cutting-edge achievements which will transform the future path of materials advancements
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and manufacturing by continuously improving neural networks algorithms & incorporating
them into experiment & simulation-based practices.

References

1) Shireen, Z., Weeratunge, H., Menzel, A., Phillips, A.W., Larson, R.G., Smith-Miles, K.
and Hajizadeh, E., 2022. A machine learning enabled hybrid optimization framework
for efficient coarse-graining of a model polymer. npj Computational Materials, 8(1),
p.224.

2) Carneiro, M.V,, Salis, T.T., Almeida, G.M. and Braga, A.P., 2021. Prediction of
mechanical properties of steel tubes using a machine learning approach. Journal of
Materials Engineering and Performance, 30(1), pp.434-443.

3) Hirkamp, André, Sebastian Gellrich, Antal Dér, Christoph Herrmann, Klaus Droder,
and Sebastian Thiede. "Machine learning and simulation-based surrogate modeling for
improved process chain operation." The International Journal of Advanced
Manufacturing Technology 117, no. 7 (2021): 2297-2307.

4) Kadulkar, S., Sherman, Z.M., Ganesan, V. and Truskett, T.M., 2022. Machine learning—
assisted design of material properties. Annual Review of Chemical and Biomolecular
Engineering, 13(2022), pp.235-254.

5) Malashin, 1., Martysyuk, D., Tynchenko, V., Gantimurov, A., Semikolenov, A., Nelyub,
V. and Borodulin, A., 2024. Machine Learning-Based Process Optimization in
Biopolymer Manufacturing: A Review. Polymers, 16(23), p.3368.

6) Zhou, T., Song, Z. and Sundmacher, K., 2019. Big data creates new opportunities for
materials research: a review on methods and applications of machine learning for
materials design. Engineering, 5(6), pp.1017-1026.

7) Rajulu, G.G., Rani, M.J., Deepa, D. and Mamodiya, U., 2022. Cloud-Computed Solar
Tracking System. Computer Communication, Networking and loT: Proceedings of 5th
ICICC 2021, Volume 2, 459, p.75.

8) Bock, F.E., Aydin, R.C., Cyron, C.J., Huber, N., Kalidindi, S.R. and Klusemann, B.,
2019. A review of the application of machine learning and data mining approaches in
continuum materials mechanics. Frontiers in Materials, 6, p.110.

9) Renugadevi, N., Saravanan, S. and Sudha, C.N., 2023. [oT based smart energy grid for
sustainable cites. Materials Today: Proceedings, 81, pp.98-104.

10) Sharma, Aanchna, Tanmoy Mukhopadhyay, Sanjay Mavinkere Rangappa, Suchart
Siengchin, and Vinod Kushvaha. "Advances in computational intelligence of polymer
composite materials: machine learning assisted modeling, analysis and
design." Archives of Computational Methods in Engineering 29, no. 5 (2022): 3341-
3385.

11) Chen, G., Shen, Z., Iyer, A., Ghumman, U.F., Tang, S., Bi, J., Chen, W. and Li, Y., 2020.
Machine-learning-assisted de novo design of organic molecules and polymers:
opportunities and challenges. Polymers, 12(1), p.163.

12)LiJ, Zhou M, Wu HH, Wang L, Zhang J, Wu N, Pan K, Liu G, Zhang Y, Han J, Liu X.
Machine Learning-Assisted Property Prediction of Solid-State Electrolyte. Advanced
Energy Materials. 2024 May;14(20):2304480.

e
21



http://www.thebioscan.com/

jﬂﬂ/ %um,uuv 21(1): 11-22, 2026 www.thebioscan.com

AN INTERNATIONAL QUARTERLY JOURNAL OF LIFE SCIENCES

13) Sing, Swee Leong, C. N. Kuo, C. T. Shih, C. C. Ho, and Chee Kai Chua. "Perspectives
of using machine learning in laser powder bed fusion for metal additive
manufacturing." Virtual and Physical Prototyping 16, no. 3 (2021): 372-386.

14) Subeshan, B., Atayo, A. and Asmatulu, E., 2024. Machine learning applications for
electrospun nanofibers: a review. Journal of Materials Science, 59(31), pp.14095-
14140.

15)Li, C.N., Liang, H.P., Zhang, X., Lin, Z. and Wei, S.H., 2023. Graph deep learning

accelerated efficient crystal structure search and feature extraction. npj Computational
Materials, 9(1), p.176.

22


http://www.thebioscan.com/

