

Spectrophotometric Analysis of Homoeopathic medicated Mustard hair oil by *Thuja occidentalis* Q

Dr Singh Suraj¹, Dr H Venkatesan^{2*}, Dr G S Chakraborty³

¹Assistant Professor, Parul institute of Homoeopathy & Research and PhD Research scholar from Vinayaka Mission Homoeopathic Medical college, Vinayaka Missions Research Foundation (Deemed to be University), Salem Tamil Nadu, India

²Professor, Vinayaka Mission Homoeopathic Medical college, Vinayaka Missions Research Foundation (Deemed to be University), Salem, Tamil Nadu, India. Email: drsurajsinghbhadoria29@gmail.com

³Principal and Professor, Parul Institute of Pharmacy and Research, Parul University, Vadodara, Gujarat, India

DOI: 10.63001/tbs.2025.v20.i04.pp2066-2073

Keywords

Thuja Occidentalis, Mustard oil, UV-Visible spectrophotometer, Absorbance

Received on:

24-10-2025

Accepted on:

19-11-2025

Published on:

31-12-2025

ABSTRACT

Background *Thuja occidentalis*, also referred to as Arbor vitae or white cedar, is a lovely tree that originated in eastern North America and is currently grown in Europe (Chang LC, Song LL, Park EJ). Local Indians in Canada first identified the herb as a remedy during a sixteenth-century campaign, and it was discovered to be effective in treating scurvy deficiency (Millspaugh CF). According to the British Herbal Pharmacopoeia, *Thuja occidentalis* has been used in human medicine to treat bronchial catarrh, enuresis, cystitis, psoriasis, uterine carcinomas, amenorrhea, and stiffness. According to the Homöopathisches Arzneibuch, *Thuja Monograph*. Deutscher Apotheker Verlag, it is primarily used as mother tincture or weakening in homeopathy nowadays. Its immunopharmacological capability has been demonstrated in several test models demonstrating its immunostimulating and antiviral actions in vitro and in vivo. *Thuja*'s substance of thujone, which is thought to be the poisonous specialist of some new plants that are crucial for the human pass on diet, is a fundamental component for its use as a therapeutic spice.

Methodology By combining the *Thuja occidentalis* mother tincture, obtained from various pharmaceutical businesses, into the basis of mustard oil as the vehicle component at drug and vehicle ratio followed by decimal scale, i.e. 1:9, homoeopathic medicated hair oil was prepared.

By using a double-beam UV-visible spectrophotometer, spectra were analyzed.

Results Absorbance capacity of Standard *Thuja occidentalis*-Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.971 at 608.00.00 nm, Absorbance capacity of Prepared *Thuja occidentalis* mustard Hair oil (*Thuja occidentalis*-Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.951 at 697.00 nm, Absorbance capacity of Standard *Thuja occidentalis*-Q ((GMP Certified Pharmaceutical Pvt. Ltd) is 0.912 at 607.00 nm, Absorbance capacity of Prepared *Thuja occidentalis* Mustard hair oil (*Thuja occidentalis*-Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.760 at 535.00 nm, Absorbance capacity of Standard *Thuja occidentalis*-Q ((GMP Certified Pharmaceutical Pvt. Ltd) is 0.767 at 606.00 nm, Prepared *Thuja occidentalis* Mustard hair oil (*Thuja occidentalis*-Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.373 at 610.00 nm.

Conclusion: This study came to the conclusion that created homoeopathic medicinal hair oil made from mother tinctures of *Thuja occidentalis* obtained from several pharmaceutical firms provides better results in terms of absorbance value.

Introduction

UV-VIS Spectroscopy: Based on the Beer-Lambert equation, which states that a solution's absorbance is directly proportional to the wavelength of light utilized, UV spectroscopy is a

physical technique for optical spectroscopy. Depending on the route length and the concentration of the absorbing species in the solution. As a result, given a specific route length, the absorber concentration in a solution may be calculated. Over the past 37 years, UV-VIS spectroscopy has developed into the most crucial analytical tool in the modern laboratory. It is essential to comprehend how quickly absorbance changes with concentration. The ease of use, adaptability, precision, speed, and cost-effectiveness of UV-VIS spectroscopy are unmatched in a variety of applications. [1, 2]

UV-Vis Spectroscopy Foundations: An element or When light induces an electronic transition in the structure of a molecule or ion, the ion will display absorption in the visible or ultraviolet area. This causes the molecules inside a sample to experience an electronic state change when it absorbs light in the visible or ultraviolet spectrum. Electrons will move from their ground state orbitals to higher energy orbitals, such as excited state orbitals or anti-bonding orbitals, as a result of the light's energy. There could be three different kinds of ground state orbitals. [3-4] expensive and requires less maintenance. The analytical approach focuses on estimating the amount of monochromatic light that colorless materials absorb in the 200–400 nm range of the near ultraviolet spectrum. The basic working principle of a UV spectrophotometer is that light with a specific wavelength range strikes a photoelectric cell, which converts the radiant energy into electrical energy that can be measured by a galvanometer, after passing through a solvent-filled cell. The absorbance spectra of a substance in solution and as a solid are obtained using UV-visible spectroscopy. or electromagnetic radiation, which causes a change in an electron's singlet excited state from a compound's ground state. The UV-visible region of the electromagnetic spectrum has wavelengths between 800 and 200 nm, or 1.5-6.2 EV. A principle that guides absorbance spectroscopy is the Beer-Lambert Law. [5-8, 13, 14]

First, Molecular (Bonding)

2. Bonding of molecular orbitals

3. Atomic orbitals, which are not bonds, are third.

UV Radiation Absorption Spectrophotometry

Spectrophotometry is frequently used because it requires less expensive equipment, especially by small businesses.

$A = a bc$ Where,

A stands for absorption, a for absorptivity, b for path length, and c for concentration.

Thuja occidentalis

Thuja occidentalis, also referred to as Arbor vitae or white cedar, is a tree that is grown as an ornamental in eastern North America [15]. Native Americans in Canada used the herb during a 16th-century expedition and discovered it to be a successful remedy for scurvy-related weakness [16]. *Thuja occ* has been used to treat psoriasis, enuresis, cystitis, rheumatism, amenorrhea, and uterine tumors in conventional medicine [17–20]. As a mother tincture or dilution, it is now typically used in homeopathy [21, 22]. This medicinal plant is also utilized as evidence-based phytotherapy for acute and chronic infections in the upper respiratory tract, together with other immunomodulation herbs like Echinacea purpurea, Echinacea pallida, and Baptisia tinctoria. Angina, pharyngitis, sinusitis, otitis media, and as an adjuvant extra antibiotics serious bacterial infections instances [23, 24].

Methodology & Materials

Study Type: Analytical

Study location: CR4D (Centre of research & Development of Parul University)

Instruments: Use of a Double-beam (UV-visible spectrophotometer)

Drug: *Thuja occidentalis linn Q* (MT) is a medication.

Vehicle: Organic Mustard Oil as a Vehicle

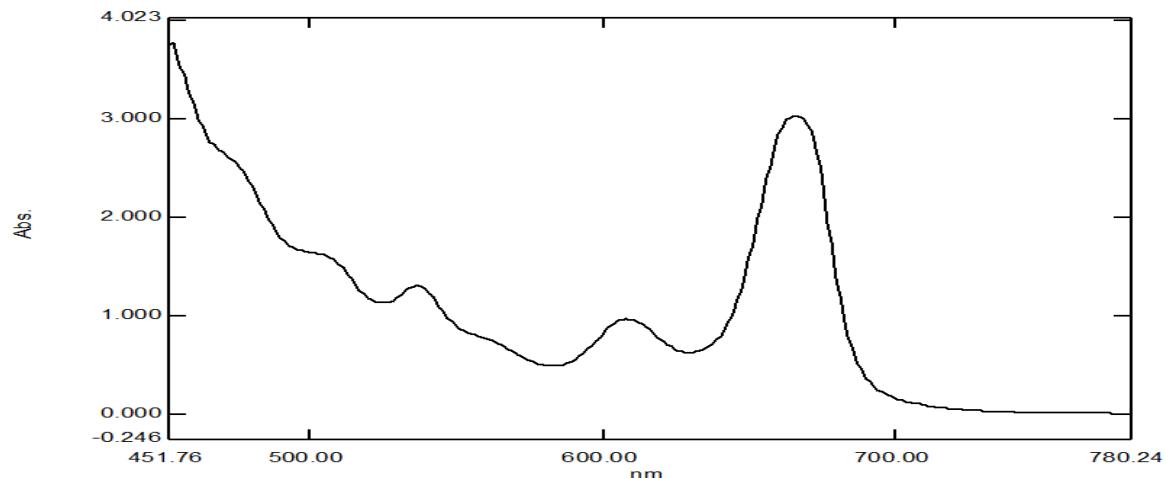
Purchased:

All the mother tincture was purchased from (GMP Certified PharmaceuticalPvt. Ltd)

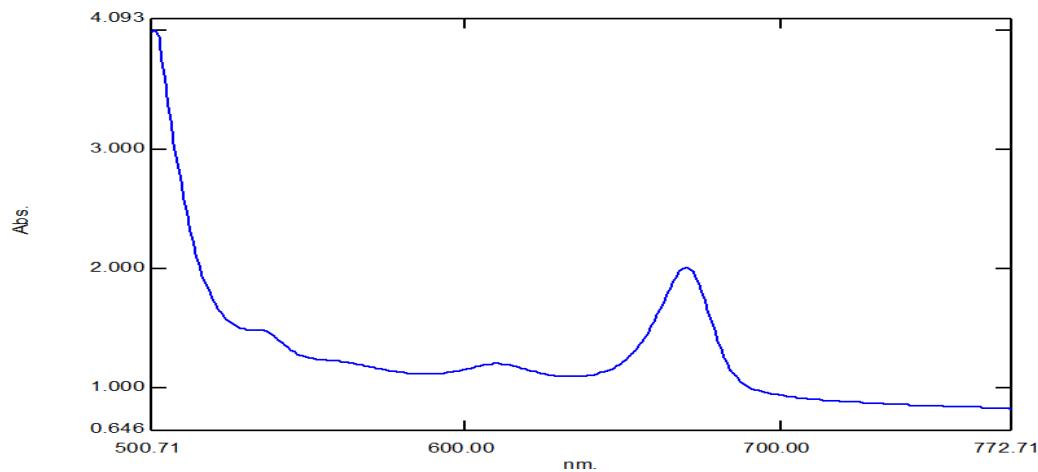
There after preparation of homoeopathic medicated hair oil done by three phases, such as

Phase I- Mixing of homoeopathic mother tincture in mustard oil as decimal scale like 1:9 drug and vehicle proportion.

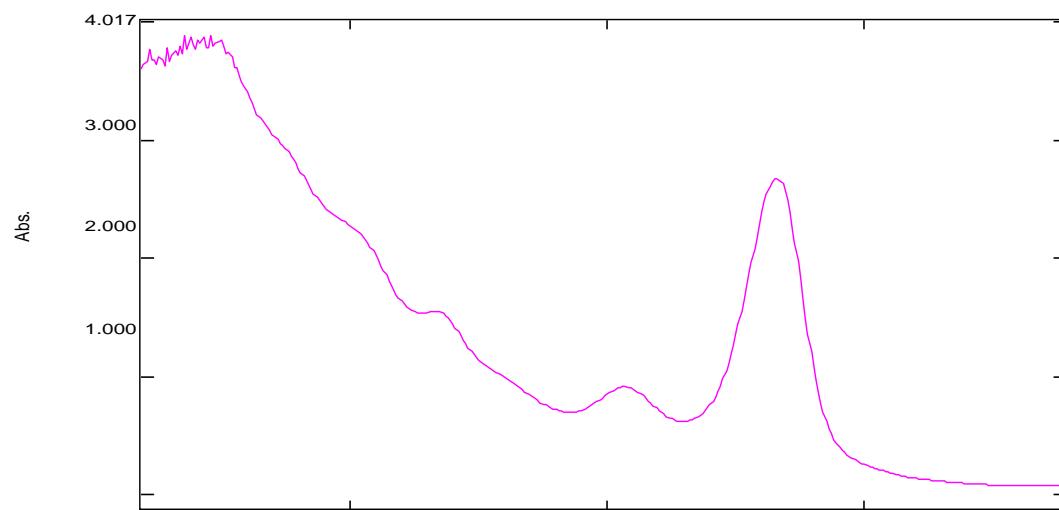
Phase II- Indirect heating of homoeopathic medicated oil under hot water bath, afterwards take 1st part of mother sample and mixed with 9 parts of mustard oil.

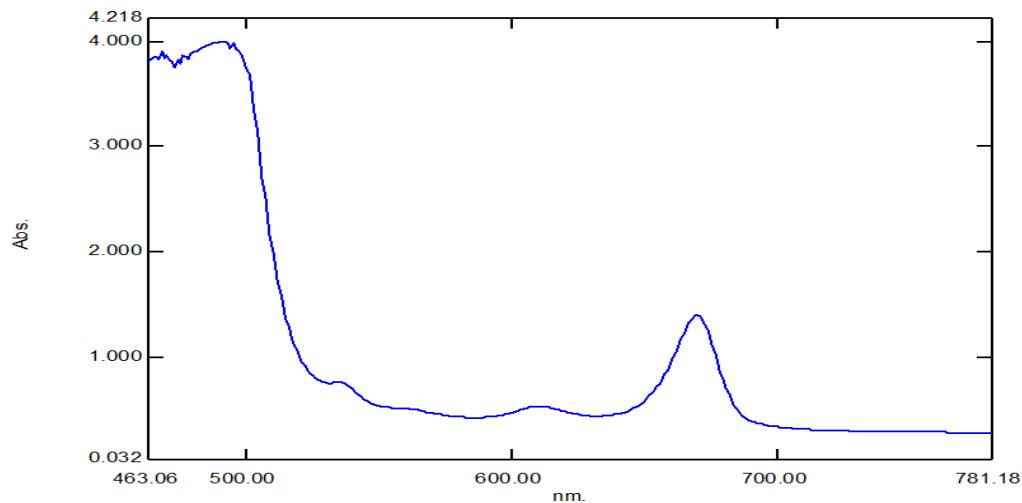

Phase III- Filtration should be done after cooling down the heated Homoeopathic medicated hair oil.

Phase IV- Storage of homoeopathic medicated hair oil in hard glass bottle, colourless bottles with proper labelling on its body. Sample analysis were done by taking passing 3-4 sample under UV- chamber in double beam UV- Visible spectrophotometer.


Results

Absorbance capacity of Standard *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.971 at 608.00.00 nm, Absorbance capacity of Prepared *Thuja occidentalis* mustard Hair oil (*Thuja occidentalis*- Q GMP Certified Pharmaceutical Pvt. Ltd) is 0.951 at 697.00 nm, Absorbance capacity of Standard *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.912 at 607.00 nm, Absorbance capacity of Prepared *Thuja occidentalis* Mustard hair oil (*Thuja occidentalis*-Q GMP Certified Pharmaceutical Pvt. Ltd) is 0.760 at 535.00 nm, Absorbance capacity of Standard *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd) is 0.767 at 606.00 nm, Prepared *Thuja occidentalis* Mustard hair oil (*Thuja occidentalis*-Q GMP Certified Pharmaceutical Pvt. Ltd.) is 0.373 at 610.00 nm.


Figure. No. 1. Standard's ability to absorb *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd)


Figure. No. 2. Prepared *Thuja occidentalis* mustard Hair oil (*Thuja occidentalis*- Q GMP Certified Pharmaceutical Pvt. Ltd)

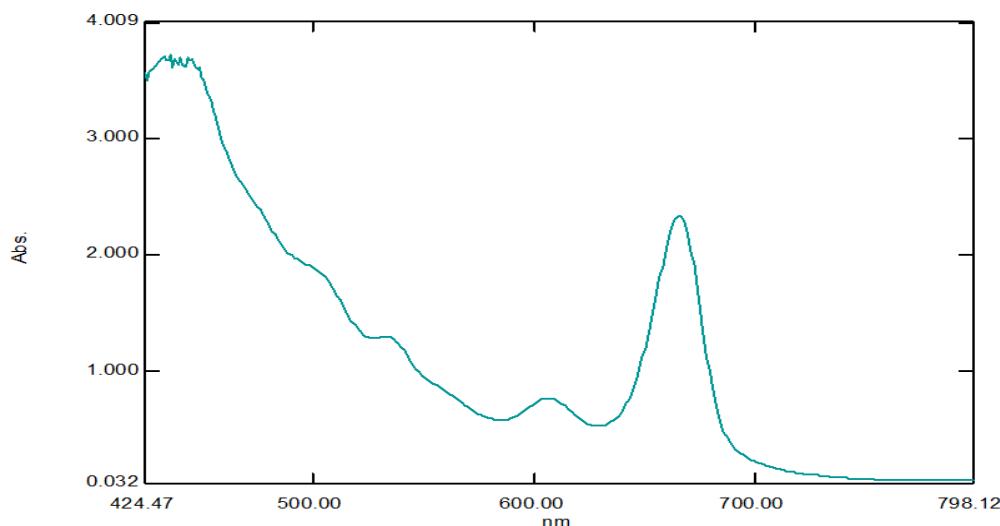

Figure. No. 3. Standard *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd)

Figure. No. 4. Prepared *Thuja occidentalis* Mustard hair oil (*Thuja occidentalis*- QGMP Certified Pharmaceutical Pvt. Ltd)

Figure. No. 5. Standard *Thuja occidentalis*- Q (GMP Certified Pharmaceutical Pvt. Ltd)

Figure. No. 6. Prepared *Thuja occidentalis* mustard hair oil (*Thuja occidentalis*- Q GMP Certified Pharmaceutical Pvt. Ltd

Conclusion

Successfully determination of absorption capacity of *Thuja occidentalis* Mustard hair oil by UV-visible spectrophotometer (Double beam)

Acknowledgement

The CR4D Department at Parul University has completed this study work, and the authors would like to thank them.

References

- [1] Skoog, D.A. Holler, F.J., Nieman, D.A. 2004, Introduction to UV Spectroscopy in, principle of instrumental analysis, 5th ed., Cole publication,.
- [2]. Analytical process of drugs by ultraviolet (UV) spectroscopy – a review R.Gandhimathi*, S. Vijay Raj, M.P. Jyothirmai *Department of Pharmaceutical Analysis, SreeVidyanikethan College of Pharmacy, Tirupathi-517102, Andhra Pradesh, India.
- [3] Sharma Y.R. 2004, Ultraviolet and visible spectroscopy in; Elementary Organic spectroscopy, 1 ed ., S.Chand & Company Ltd ., New Delhi,; 9-60.
- [4]. Kothekar V. (2012), Basic UV-Vis Theory, Concepts and Applications.: 1-28
- [5]. Mend ham J., et al; Vogel,s, 2003, Textbook of Quantitative Chemical Analysis. 6th ed. Pearson education, Singapore pvt.Ltd ., Delhi,; 6(3): 3-8.
- [6]. Donald L. Pavia, Gary M. Lampman, George S.Kriz, IamesR.Vijaan. 1997, Spectroscopy. Third Edition, CBS Publishers, and Distributors,.
- [7]. Clark BJ, Frost T, Russell MA, editors. 1993 Apr 30, UV Spectroscopy: Techniques, instrumentation and data handling. Springer Science & Business Media,.
- [8]. Sheffield Hallam University, UV-Visible Spectroscopy Instrumentation.

[9]. Thermo Spectronic, Basic UV-Vis Theory, Concepts and Applications, 11-12

[10]. G. R. Chatwal, S. K. (1979), Anand Instrumental methods of chemical analysis, Himalaya Publishing House.

[11]. Sethi PD. 1997, Quantitative Analysis of drugs in pharmaceutical Formulations, 3rd ed., CBS Publishers and Distributors, New Delhi.

[12]. Beckett A.H., Stenlake J.B., 2001, Practical Pharmaceutical Chemistry; 4th ed. CBS Publisher and distributors delhi,: 280-286.

[13]. Modern Chemical Techniques, Ultraviolet/visible Spectroscopy, The Royal Society of Chemistry, 102,103.

[14]. Gandhimathi R. et al. 2012, International Journal of Pharmaceutical Research & Analysis, 2(2): 72-78 Pg no. 76.

[15]. Chang LC, Song LL, Park EJ, et al. 2000, Bioactive constituents of *Thuja occidentalis*. *J Nat Prod*; 63:1235–8.

[16]. Millspaugh CF. 1974, American Medicinal Plants. *Thuja*. Dover Publications, New York,

[17]. Naser B, Bodinet C, Tegtmeier M, Lindequist U. 2005 Feb 9, *Thuja occidentalis* (Arbor vitae): a review of its pharmaceutical, pharmacological and clinical properties. *Evidence-based complementary and alternative medicine*;2:69-78.

[18]. Shimada K. 1956, Contribution to anatomy of the central nervous system of the Japanese upon the vermal arbour vitae. *Okajimas Folia Anat Jpn*; 28:207–27.

[19]. Baran D. 1991, Arbor vitae, a guarantee of health. *Rev Med Chir Soc Med Nat Iasi*; 95:347–9.

[20]. Offergeld R, Reinecker C, Gunz E, et al. 1992, Mitogenic activity of high molecular polysaccharide fractions isolates the cypressaceae *Thuja occidentalis* L. enhanced cytokine-production thyapolysaccharide, g-fraction (TPSg). *Leukemia*; 6:189–91.

[21]. Homöopathisches Arzneibuch (HAB). 1985, *Thuja* Monograph. Deutscher Apotheker Verlag, Stuttgart, , 876–7.

[22]. Homöopathisches Arzneibuch (HAB). 2003, *Thuja* Monograph. Deutscher Apotheker Verlag, Stuttgart;1–2.

[23]. Reitz HD, Hergarten H. 1990, Immunmodulatoren mit pflanzlichen Wirkstoffen–2. Teil: eine wissenschaftliche Studie am Beispiel Esberitox® N. *Notabene Medici*; 20:304–6, 362–6.

[24]. Vorberg G. 1984, Bei Erkältung unspezifische Immunabwehr stimulieren. *Ärztliche Praxis*; 36:97–8.