

## Artificial Intelligence - Driven Multifunctional Nanocarriers: A Synergistic Revolution in Precision Cancer Immunotherapy

Devanshi Vijay Parmar\*<sup>1</sup>, Mrs. Jyoti Verma\*<sup>2</sup>

<sup>1</sup> M.Pharm Student, School of Pharmacy, Rai University, Ahmedabad-382260, Gujarat (India).

<sup>2</sup> Associate Professor, School of Pharmacy, Rai University, Ahmedabad-382260, Gujarat (India).

**Corresponding Author\* :** Mrs. Jyoti Verma , School of Pharmacy, Rai University,

Ahmedabad, Gujarat, [jyoti.verma@raiuniversity.edu](mailto:jyoti.verma@raiuniversity.edu)

**DOI:** [10.63001/tbs.2025.v20.i03.S.I\(3\).pp2208-2227](https://doi.org/10.63001/tbs.2025.v20.i03.S.I(3).pp2208-2227)

### KEYWORDS

Targeted drug delivery, machine learning, artificial intelligence, nanocarriers, cancer immunotherapy, precision oncology, and theranostics.

**Received on:**

**10-10-2025**

**Accepted on:**

**16-11-2025**

**Published on:**

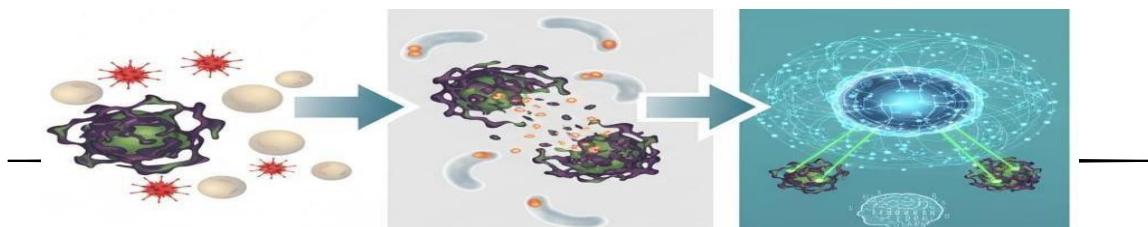
**29-12-2025**

### ABSTRACT

Cancer treatment has shifted significantly from generalized therapies to personalized, precision- driven approaches. Although immunotherapy has transformed cancer management, its clinical success is often limited by tumor heterogeneity, immune-escape mechanism, and dose related toxicities. These challenges highlight the urgent need for advanced and adaptable therapeutic strategies. Multifunctional nanocarriers have emerged as efficient platforms for the targeted delivery of anticancer agents. The incorporation of artificial intelligence AI into nanocarrier design has further accelerated progress in drug delivery research. Machine Learning [ML] & Deep learning [DL] models now support the rational design and optimization of Nanoscale carriers capable of tumour specific drug delivery. Together AI and Nanocarriers create a synergistic system that enhances therapeutic precision, enables dynamic and feedback based treatment planning, and improves all Overall drug delivery efficiency. This review outlines the key advancements, integration approaches, challenges and future prospects of AI- enabled nanocarrier systems in precision-based cancer immunotherapy.

## 1 Introduction

### 1.1 Context: The Development of Precision Cancer Treatment


Over the past few decades, cancer therapy has shifted remarkably from broad, Cytotoxic treatments towards more refined and individualised approaches. Previously treatment methods such as chemotherapy and radiation mainly targeted rapidly dividing cells, while these strategies could shrink tumours their lack of selectivity often damage healthy tissue as well as leading to severe side effects and reducing patient's Overall quality of life. These limitations encourage the oncology field to move towards therapies that are more focused, effective and safer.

Immunotherapy has emerged as a groundbreaking strategy in this transition. By stimulating the body's own immune system to recognise and destroy cancer cells, treatments such as immune checkpoint inhibitors (ICIs) and CAR-T Cell therapy have shown impressive and long-lasting responses in several cancer types. However, despite its promise, immunotherapy is not universally effective. Tumour heterogeneity, immune evasion, resistance mechanisms, and serious-immune related toxicities still limit its success across many patient groups.

In recent years, combining artificial intelligence (AI) with nanomedicine has opened a new and promising frontier in precision oncology. AI makes it possible to design intelligent nanocarriers with highly specific psychochemical properties, enabling them to deliver drugs more accurately and adjust treatment based on real-time therapeutic feedback. This synergy does not only improve drug development efficiency but also supports the creation of safer, more personalised, and more adaptable cancer treatments. Together, these advances are helping oncology move from a generalised treatment mindset to a precision-driven model centered on patient safety, outcomes, individualised care.

While traditional approaches such as chemotherapy, radiotherapy, and surgery still play important roles in cancer management, their limitations- systemic toxicity, resistance, and variable effectiveness- highlight the need for improved strategies. Over the last two decades, progress in genomics, bioinformatics, and molecular biology has made precision cancer therapy possible. By tailoring treatment to the unique genetic, epigenetic, and proteomic features of each patient's tumor, precision oncology aims to enhance therapeutic outcomes while minimising harmful side effects. The integration of advanced technologies, including high-throughput sequencing and biomarker- driven treatment selection, has significantly transformed clinical cancer care and set the foundation for high individualised therapeutic plans.

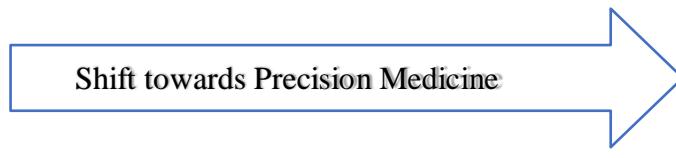
## CHEMOTHERAPY IMMUNOTHERAPY AI-NANOCARRIER



Non-specific targeting.

Severe side effects

Unleashing the


immune System.

variable response

Precision Medicine ,

Intelligent, Targeted delivery.

Minimised Toxicity



Shift towards Precision Medicine

**Figure 1:** shows the development of cancer treatment from traditional chemotherapy to immunotherapy and, ultimately, AI-driven precision medicine based on nanocarriers. The change in oncology toward focused and customized therapies is depicted in the diagram.

## 1.2 Importance: The Vital Need for Cooperation

The integration of multifunctional nano carries with artificial intelligence (AI) represent a profound shift in oncology, moving far beyond a simple technological advancement. One of the biggest challenges in cancer treatment is heterogeneity, which causes patient with similar clinical profiles two respond very differently to the same therapy. This biological variability complicates diagnosis and limits the effectiveness of advanced treatments such as immune checkpoint inhibitors, which benefit only a fraction of patients. Addressing this challenge requires a system-level approach capable of understanding the complexity of cancer and translating it into precise therapeutic strategies. AI play a vital role here by analysing large, multi-omics datasets to identify Subtle Molecular patterns and Prognostic biomarkers, enabling truly individualised treatment planning.

At the same time, multifunctional nanocarriers act as a versatile delivery platform that can selectively target tumour cells, protect therapeutic agents, and release drugs in a controlled manner that minimises toxicity and enhance treatment efficiency. Importantly, AI also supports the intelligent design and optimization of these nano carriers, creating a closed- loop system. That links monitoring, delivering, design, and diagnosis. This combined use of AI and nanocarriers results in a dynamic and adaptable cancer treatment model-one that continuously adjusts to patient- specific needs and represents a major advancement in the evolution of precision oncology.

## 1.3 Scope of the Review

This overview examines advances that have been made in combining multifunctional nanocarriers with artificial intelligence (AI) to advance precision cancer immunotherapy. rather than treating these topics independently, the paper investigates how they complement one another in real-world research. It also emphasizes AI's expanding role in domains like as

treatment prediction and immunotherapy response refinement. Drawing on research published between 2018 and 2025; it first defines the many types of multifunctional nanocarriers and the distinct roles they can play in cancer treatment.

Then, it connects these domains together by emphasizing how algorithms powered by AI enable logical nanocarrier design, mathematical simulation of pharmacokinetics and distribution in the body, and the development of smart theranostic platforms capable of concurrent diagnosis and therapy. By spotlighting the opportunities and obstacles, this research highlights the transformative potential of AI-nanocarrier synergy in shaping the future next generation of personalized oncology. Despite presenting individual case studies and translational applications, the study also critically explores the current technological hurdles, regulatory limits, and ethical problems that must be addressed to ensure successful clinical deployment.

## 2 Principal Sections

### 2.1 Artificial Intelligence in Immunotherapy for Cancer

Artificial intelligence (AI) is transforming the field of cancer immunotherapies, by bringing data-driven strategies at every stage of patient care, early and accurate diagnosis as well as personalized treatment design. Employing its unprecedented capacity to process and combine extensive multi-omics data with clinical information, AI empowers a deeper understanding of the complex cancer biology and tumor-immune interactions. It accelerates the transition to genuinely precision-based oncology by helping to predict patient-specific responses, optimize therapy combinations, and find new biomarkers in addition to increasing diagnostic accuracy.

### 2.2 Predictive Analysis & Biomarker Discovery

Inability to predict with confidence patient response to some types of treatment is a significant impediment to modern immunotherapy. Although numerous patients with low biomarker levels indeed display high therapy response, the traditional biomarkers such as tumor mutational burden (TMB) and the expression of programmed death-ligand 1 (PD-L1) can provide limited information (Lu et al., 2025; Al-Jamal et al.) By changing to multi-parametric and from single marker based dependence on MR signal to quantitative windows, increasing reliability for hydrophilic complexation agents is suggested. Analysis of high-dimensional data, AI stands out as a powerful solution. Instead of relying on a single biomarker for diagnosis, investigators are now using deep learning algorithms to uncover subtle molecular and cellular patterns associated with how patients respond to therapy (Kandel et al., 2025; Al- Jamal et al., 2025a;

Li et al., 2025). surprisingly, when this model was combined with the expression of PD-L1 data, its forecasting accuracy improved much further, outperforming any single biomarker. The most recent comprehensive study on advanced NSCLC found that a deep learning model trained on routine H&E whole-slide pictures could predict which patients would benefit from immune checkpoint drugs more effectively than traditional indicators such as TMB or TILs (Lu et al., 2025).

Similarly, in advanced melanoma, a machine learning approach that paired LDH levels with arterial-phase CT radiomic characteristics produced more valid treatment-response predictions than either metric alone (Daye, 2025). Instead, a broader, systems-biology perspective—powered by AI—is becoming increasingly important for understanding tumor heterogeneity and improving therapy prediction (Kandel et al., 2025; Al-Jamal et al., 2025a). In the end, these data demonstrate that simplistic, single-marker evaluations cannot represent cancer's heterogeneity.

### **2.3 Target Identification & Drug Discovery**

Traditional drug development is still an expensive, Time consuming and frequently ineffective procedure. However, by significantly speeding up the identification of new target for therapy and drug candidates' artificial intelligence is changing this landscape large scale genomic and molecular data sets can be analysed by AI to find a clinically relevant targets like new antigens which are essential for creating customised immune mediated therapies. (Li et al., 2025; Insilico Medicine, 2025). By creating completely integrated end-to-end drug discovery pipeline business like in silico medicine have already shown the strength of AI driven platforms. This system employee generative AI models that may create entirely new molecular structures which is a significant advancement above conventional target identification techniques. A novel large scale language model (multi-LLM) framework was recently suggested by research with the goal of enhancing biomarker identification. This method improves candidate gene selection reliability, lower bias, add boost reproducibility by combining multi omics data sets with a structured rapid engineering and comparison reasoning across various AI models [park lee 2025]. When taken as a whole these developments demonstrate how ai is not only speeding up but also radically changing the basic methods that underpin precision immunotherapy and current drug discovery.

### **2.4 Customized Therapy Scheduling**

Personalised treatment plan Artificial Intelligence not only expedites drug discovery but also play crucial role in developing personalised treatment plans by combining different patient specific data such as genomic profile imaging results and tumour microenvironment features (Kandel et al., 2025; Ori et al., 2024; Wilson & G.M., 2020). In favour of precise drugs tailored to each patient's unique biological traits, this method marks a significant divergence from previous population-based approaches to therapy. AI enabled Analytical tools can process millions of clinical genomic parameters per patient to generate thorough risk Projections and identify patient subgroup Most likely to benefit from specific treatment options (Kandel et al., 2025). Beyond risk classification AI supports clinical decision making through real time therapeutic response monitoring, regimen planning optimization, and the prediction of synergistic combination therapies. A more patient focused cancer paradigm is supported when these skills are coupled to increase therapy efficacy and reduce side effect risk (Wilson & G.M., 2020; Li et al., 2025).

### **3 Multifunctional Nanocarriers for Immunotherapy**

Multifunctional Nanocarriers Are a flexible group of synthetic substances designed to carry out multiple treatment functions at once, offering an extremely accurate and flexible platform for contemporary immunotherapy to treat cancer.

#### **3.1 Types, Purpose , and Benefits**

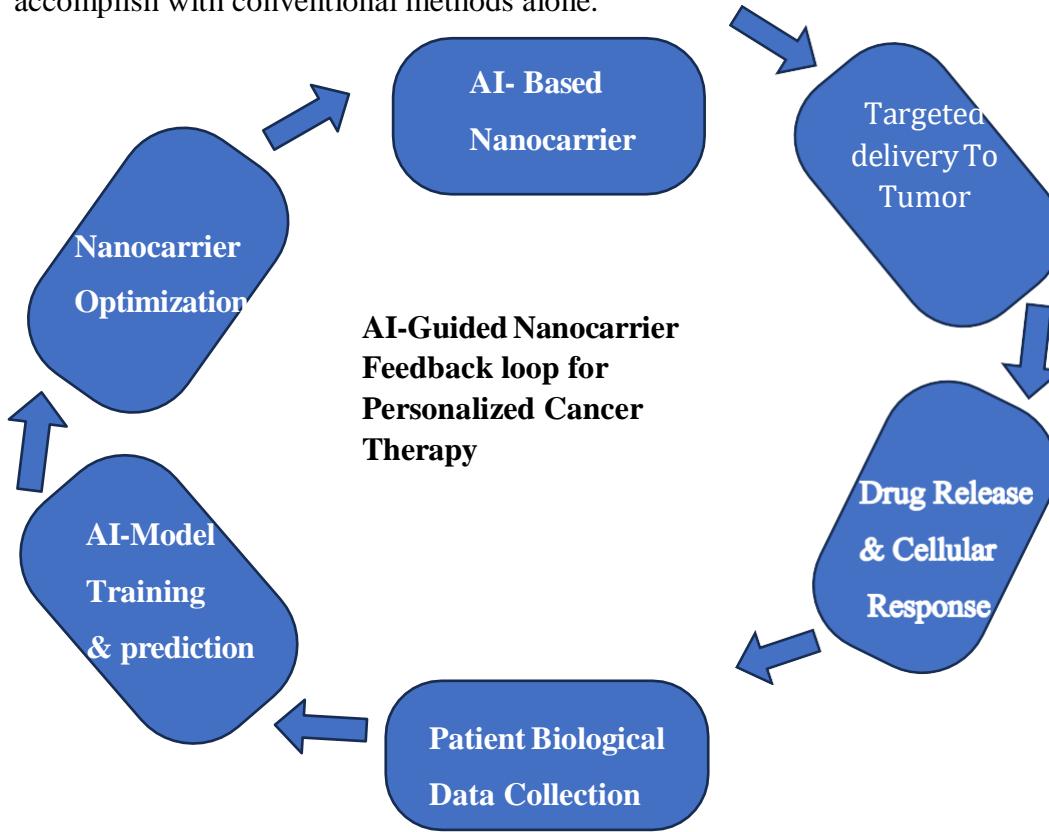
Nano carriers which typically range in size from 1 to 100 nm have evolved into adaptable and effective means of delivering medication with greater accuracy and effectiveness (Sheikh & Jirvankar, 2024). Numerous types of Nano carriers have been created each with unique structural and functional benefits. Polymeric such as poly (D,L-lactic-co-glycolic acid) (PLGA) and poly (ethylene glycol) (PEG) are widely used due to their superior biocompatibility, biodegradability, chemical stability, and high capacity for encapsulating immune modulating molecules (Sheikh & Jirvankar, 2024; Da Silva et al., 2020). Lipid based carriers for example liposomes which can encapsulate drugs and boost their solubility, stability, and overall pharmacokinetic performance provide another trustworthy foundation (Liu et al., 2022; Abosalha et al., 2024).

Because of their widely branched monodisperse three dimensional structure and customizable Surface chemistry dendrimers are increasingly being studied for targeted drug delivery and vaccine development. There are several significant advantages to nanocarriers. By increasing the duration of circulation enhancing solubility and bioavailability and preserving medication from early breakdown they allow control and sustain drug release (Truong et al., 2015; Liu et

al., 2022). Disadvantages are particularly helpful for molecules with limited water solubility or short half-lives (Mujibullah Sheikh & Jirvankar, 2024).

Their main aim is targeted drug delivery which is achieved through passive and active targeting techniques. Passive targeting utilises the tumour microenvironment (TME) Specifically leaky rescue and inadequate lymphatic drainage, which encourages nanoparticle accumulation through the enhanced permeability and retention effect (Min et al., 2025; Sheikh & Jirvankar, 2024). However, by modifying nanocarrier with antibodies, peptides, aptamers or other ligands that selectively bind to enhance receptors on cancer cells active targeting guarantees improved cellular uptake and side specific activity (Truong et al., 2015; Min et al., 2025).

In addition to conventional drug administration, versatile nanocarriers are crucial for immunomodulation (Al-Jamal et al., 2025a; Liu et al., 2022). Adjuvants and intelligence can be co delivered directly to antigen presenting cells (APCs) with the goal to induce strong lasting immune response (Da Silva et al., 2020). In addition, stimulus sensitive nanocarriers enable highly localised drug release while lowering systemic toxicity and of target exposure by responding to tumour specific stimuli such as acidic PH, redox gradients, or elevated enzyme activity (Sheikh & Jirvankar, 2024; Truong et al., 2015).


## 4 AI and Nanocarrier Synergy for Precision Cancer Immunotherapy

The real revolution in precision oncology Is found in the convergence of AI with nanotechnology where AI actively participates in the design and development of nano carriers rather than merely serving as a tool for analysis. This combination creates a flexible dynamic system that can overcome the limitations of traditional treatment.

### 4.1 AI Guided Nanocarrier Design & Drug Optimization

Conventional nanocarrier manufacture can be costly, time consuming, and heavily depend on trial-and-error research, involving multiple formulation and physical testing to identify ideal qualities (Wilson et al., 2024; Zheng et al., 2021). Artificial Intelligence has totally changed this process by substituting a predictive data driven approach for sequential screening methods. Through training algorithms on large-scale data sets containing nanotechnology characteristics and biological responses, AI can virtually predict how parameters such as Particle size, geometry, surface modification and chemical composition affect stability, biodistribution, and therapeutic performance (Chen et al., 2025a; Wilson & G.M., 2020). Several research show how effective this approach is. As an illustration computational simulations have shown that

road-shape nanoparticles enter tumour tissue around 25% more than their spherical counterparts in their liver cancer research. In another study AI was used to evaluate lipid formulation and patient specific tumour data, leading to the identification of novel lipid ligand combination designed specifically to target KARS mutation. Similarly, optimization utilising genetic algorithms for polymeric nanoparticle design enhance drug deposition in hepatocellular carcinoma (HCC) Tumours by about 18% in preclinical experiment. This strategy generated lipid nanoparticles with greater selectivity for mutant cells and decreased off- target toxicity- achievements that would be very difficult to accomplish with conventional methods alone.



**Figure 2: AI-guided nanocarrier design and feedback loop:** AI-Algorithm analyze data to optimize nanoparticle features, enable targeted delivery ,monitor therapeutic response and continually refine treatment through adaptive learning.

#### 4.2 AI-Enabled Theranostics and Adaptive Therapy

A key element of The AI nanocarrier combination is the creation of intelligent theranostic system, in which a single nanoparticle is engineered to serve therapeutic as well as diagnostic function. These multipurpose nanocarrier which can transport drugs and imaging agents simultaneously allow clinicians to monitor drug biodistribution and excess tumour responses in real time (Al-Jamal et al., 2025b; Wilson & G.M., 2020; Noury et al., 2025b). Artificial

intelligence enhances the complexity of adaptive therapy

through the analysis of these dynamic

data sets enabling treatment plants to be continually modified in response to patient therapeutic response (Al-Jamal et al., 2025a; Chen et al., 2025a). For instance, AI system can evaluate nanoparticle biodistribution patterns to maximise tumour targeting while reducing of target damage.

## 1 “Applications of AI-Nanocarrier Synergy Across Cancer Types.”

| Cancer Type               | AI Contribution                                                                | Nanocarrier/Approach                             | Key Outcomes                                                    | References          |
|---------------------------|--------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------|---------------------|
| <b>Lung Cancer</b>        | Biomarker identification (e.g., EGFR mutations); optimization of ligand design | AI-assisted targeted nanocarriers                | Improved precision of drug delivery; reduced systemic toxicity  | Wilson & G.M., 2020 |
| <b>NSCLC</b>              | Deep learning analysis of whole-slide images                                   | AI-driven patient stratification for ICIs        | Better prediction of responders ; reduced unnecessary treatment | Lu et al., 2025     |
| <b>Melanoma</b>           | ML model integrating CT images + LDH levels                                    | AI-guided immunotherapy response prediction      | Enhanced personalized decision-making; optimized ICI use        | Daye, 2025          |
| <b>Liver Cancer (HCC)</b> | AI prediction of pore size & surface functionalization in MSNs                 | Cisplatin-loaded mesoporous silica nanoparticles | ~60% tumor reduction in preclinical models                      | Chen et al., 2025a  |

The various uses of AI–nanocarrier synergy across major cancer types are demonstrated by the examples compiled in **Table 1**.

While predictive modelling has enhanced patient selection for immunotherapy in NSCLC and melanoma, minimizing needless exposure to immune checkpoint inhibitors, AI has enabled precision targeting in lung cancer through biomarker-driven nanocarrier design. AI-assisted optimization of mesoporous silica nanoparticles has also shown impressive preclinical performance in hepatocellular carcinoma, suggesting the possibility of more individualized and successful treatment approaches. When taken as a whole, these results highlight the fact that AI-guided nanomedicine is not specific to any one type of cancer but rather is a broadly applicable platform with important ramifications for oncology practice in the future.

## 2 Difficulties, Restrictions, and Ethical Issues

### 6.1. Clinical and Technical Obstacles

Based on artificial intelligence nanomedicine has a lot of potential, but before it can be completely incorporated into clinical practise a number of issues needed to be resolved. The large-scale production of nanocarrier is a significant technical obstacle. Although highly effective prototypes can be produced through laboratory scale manufacturing it is still very difficult to scale these processes to industrial production while maintaining cost effectiveness batch to batch consistency and regulatory compliance especially for complex multifunctional system (Al-Jamal et al., 2025b; Zheng et al., 2021; Noury et al., 2025b). The lack of standardised manufacturing processes and a lack of information on how tiny differences in psychochemical characteristics including polydispersity affect biological performance exacerbate this problem (Pethick et al., 2024).

The frequent discrepancy between preclinical success and clinical outcome is another enduring problem. Several nanomedicines show great medicinal effectiveness in animal models, however they don't work well in human clinical studies. The enhanced permeability and retention effect( EPR) which is a very apparent in transplanted mouse model but frequently inconsistent or non-existent in human tumours, is a significant factor in this disparity. The urgent need for predicting preclinical systems that more closely mimic human tumour biology is made clear by translational gap which is sometimes referred to as a valley of death.

### 6.2. Social & Ethical Aspects

The use of AI in Nanomedicine creates important ethical concern that require careful

monitoring in addition to increasing treatment alternatives.

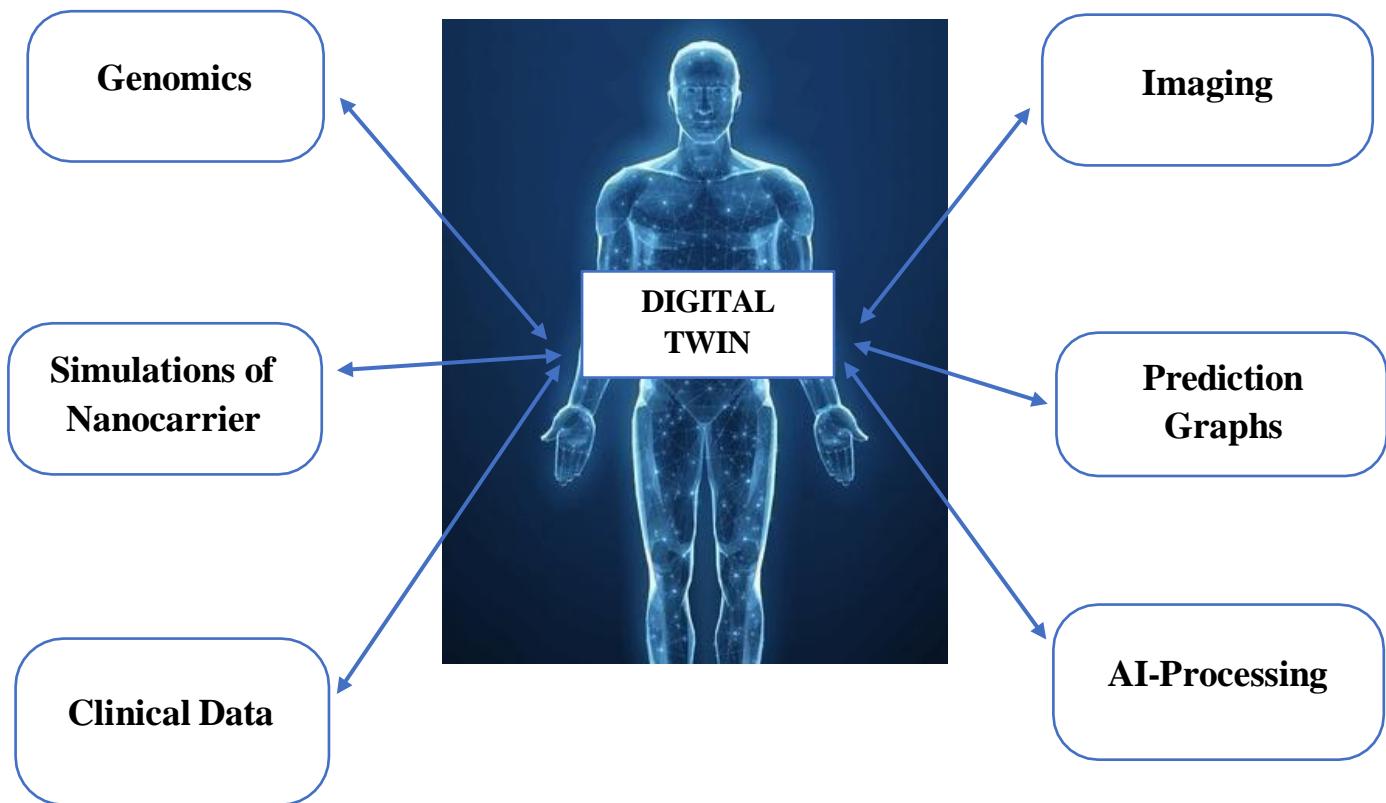
The discussion now encompasses what is ethically acceptable as well as what is scientifically feasible.

- **Security & Privacy of Data**

AI system requires vast amounts of patient data especially sensitive genetic and clinically data despite the fact that this data is essential for creating accurate models there are serious privacy concerns. Consumer may lose faith in AI drive in healthcare if solid data protection legislation, clear consent processes, and safe storage mechanism are lacking. Therefore, maintaining patient privacy must remain the top priority (Pethick et al., 2024).

- **Equitable Access:**

It frequently takes substantial financial and technological resources to develop and execute AI assisted nanomedicine. This shows that patients may not have same access as those in pleasant places if their healthcare system lack funds or in low-income areas (Zheng et al., 2021). Given that the majority of research is undertaken in high income nations, this might increase already existing health inequities if left unregulated (Pethick et al., 2024). Equitable access must be preserved for execution to be ethically and socially acceptable.


- **Transparency & Accountability:**

Many AIs algorithms function in a black box manner generating predictions without clearly outlining their methodology. Clinicians may find it tough to figure out or totally trust AI proposals due to this lack of clarity. It also creates challenging problems such as who should be held accountable if something goes wrong: the institutions Utilising the technology the doctor or the developers ? AI system must be more transparent and have explicitly accountability criteria in place to foster trust and guarantee safe medical adoption (Wilson & G.M., 2020; O'Donnell et al., 2025).

### **3 Synopsis & Prospects**

The landscape of precision oncology is evolving thanks to the blend of artificial intelligence and multifunctional nano carriers. These advancements are addressing some of the limitations of traditional cancer treatments. Now, the design of nanocarriers is shaped by AIs capability to analyse vast amount of biomedical data, enabling them to deliver treatments tailored to

individual patients. The partnership between AI and nanotechnology is set to transform cancer care. Looking ahead, several exciting opportunities are emerging. The usage of digital twin's virtual patient models that can stimulate replicate how nanoparticle work in the body is one exciting innovation. Researchers (Chen et al., 2025a; Zheng et al., 2021) propose that these models could greatly cut down on both the cost and time needed for development by helping to refine nanocarrier design before they move to clinical trials. AI driven automated synthesis platforms are also being investigated to address manufacturing challenges. This could make it possible to produce nanocarriers suitable for therapeutic application in a scalable and repetitive manner. (Al-Jamal et al., 2025b).



**Figure 3: Concept of a digital twin in precision oncology**

To fully realise the potential of AI guided the field of nanomedicine, a number of important issues must be resolved for the purpose to train more reliable and precise ai models one of the largest crucial duties is to generate vast to centralised high quality and anonymous data. (Al-Jamal et al., 2025b; O'Donnell et al., 2025; Noury et al., 2025b). The development of interpretable AI tools such explainable artificial intelligence, which enables clinicians to explain how an algorithm arrives as its result is similarly Vital. Raising openness in this manner will be essential for fostering clinical acceptance and boosting confidence.

#### **4 Final Verdict**

An important advancement in cancer treatment is the use of AI in conjugation and modified drug nanocarrier. It provides some extent of customised adaptable targeted treatment that deals

with major issues, including systemic toxicity and tumour heterogeneity. Though AI driven analysis of each patient biological profile. This technique decodes conventional treatment, individualised biological information and translated it into highly targeted nano carrier system. bringing together the fusion of ai and nanotechnology signals a deep change in therapeutic strategies for cancer, providing easily available treatment that are more precise, effective and advancement. It is not just a slight improvement. It introduces a complete major shift in cancer care.

## Recognition

I want to thank Rai University for giving me access to the facilities and resources I needed to prepare this review. Additionally, I am grateful to the writers and researchers whose contributions yielded insightful information for this piece. Lastly, I genuinely thank my family and friends for their encouragement and support, which inspired me to finish this task on my own.

## References

1. Abosalha A, Al-Jabari MA, Al-Ani AH, Eljamal O, Al-Busaidi SF, AlHashmi AT. Recent advancements in cancer RNA-interference therapy with nanotechnology strategies. *J Cancer Biomol Ther.* 2024;2(1):1-10.
2. Abosalha A, Al-Jabari MA, Al-Ani AH. Nanoparticles as drug delivery systems for cancer therapy: A review. *J Nanomed Nanotechnol.* 2024;15(1):1000100.
3. Agboklu M. The impact of artificial intelligence on innovative nanotechnologies for advanced medical diagnosis. *J Nanotechnol Res.* 2024;1(1):1-10.
4. Al-Jamal KT, AbuHashish NM, Al-Ani AH, Eljamal O. The synergistic role of artificial intelligence and nanotechnology in precision oncology: A review. *Middle East Cancer Oncol J.* 2025;1(3):6-9.
5. Chen Y, Zhao Y, Chen G. Convergence of nanotechnology and artificial intelligence in liver cancer: A comprehensive review. *Nanoscale.* 2025;17(1):1-15.
6. Daye D. Machine learning predicts immunotherapy response in metastatic melanoma.
  - a. RSNA News. 2025.
7. Hu CMJ, Aryal S, Zhang L. Nanoparticle-assisted combination therapies for effective cancer treatment. *Ther Deliv.* 2010;1(3):323-334.
8. Insilico Medicine. AI-generated drugs to reach market by 2030, says Insilico CEO.
  - a. 2025.
9. Kandel M, et al. AI-powered biomarker discovery is revolutionizing cancer diagnosis and treatment. *Lifebit.* 2025.

10. Kulkarni T, Al-Ani AH, Abosalha A, Eljamal O. Surface chemistry of gold nanoparticles modulates cytokines in pancreatic cancer cell lines: A correlative study. *Fortune J Health Sci.* 2024;1(1):1-10.
11. Lakkireddy V, Jafar B, et al. Overview on cancer immunotherapy: A review. *J Cancer.* a. 2025;4(1):1-13.
12. Li D, et al. AI-powered biomarker discovery in cancer research. *Front Drug Deliv.* a. 2025;1(1):1556426.
13. Liu Y, Zhang W, Chen X, Zhang L. Nanomaterials for tumor diagnosis and therapy. a. *Mater Today.* 2022;55:102450.
14. Lu Y, et al. Deep learning model for predicting immunotherapy response in NSCLC. *JAMA Oncol.* 2025.
15. Min Y, et al. Nanomedicine and artificial intelligence in cancer healthcare: Emerging integrations. *Nanoscale.* 2025;17(1):1-15.
16. Sheikh M, Jirvankar P. Harnessing AI for enhanced nanoparticle design in precision oncology. *AIMS Bioeng.* 2024;11(4):574-597.
17. Nan Y, Li S, Zhao D, Wu J, Wang Y. Multifunctional nanoparticles for cancer immunotherapy: Reprogramming the tumor environment. *Nanomedicine.* 2024;55:102450.
18. Noury M, Al-Ani AH, Eljamal O, Abosalha A. AI-driven innovations in multifunctional nanocarriers for drug and gene delivery: A mini-review. *Crit Rev Oncol Hematol.* 2025;199:104597.
19. O'Donnell M, et al. Nanomedicine and AI: A new frontier in oncology. *Oncologist.* a. 2025;20(3):200-210.
20. Ori MO, Ekpan FM, Samuel HS, Egwuatu OP. Integration of artificial intelligence in nanomedicine. *Eurasian J Sci Technol.* 2024;2(2):1-10.
21. Park N, Lee JH. A systematic multi-LLM AI framework for biomarker discovery. *bioRxiv.* 2025.
22. Pethick J, et al. Ethics in nanomedicine: Key issues and principles. *AZoNano.* 2024. 23] Sharma R, et al. Transformative potential of nanotechnology in medicine. *Front Drug Deliv.* 2025;1(1):1556426.
23. Wilson BGM. Artificial intelligence-enabled nanomedicine for cancer treatment. a. *Nanomedicine.* 2020;15(5):433-435.
24. Wilson B, et al. Machine learning and AI in nanomedicine. *Nanomedicine.* a. 2024;12(4):102148.
25. Zheng C, et al. Challenges and opportunities of nanomedicines in clinical translation. a. *Biomaterials.* 2021;271:120760.
26. Bhatt J, Jain S, Gupta S, Bhatia DD. Nanomedicine revolutionizing cancer immunotherapy: recent advancements in nanotechnological strategies and applications. *Nanoscale Adv.* 2025;7:7086-7108. <https://pubs.rsc.org/en/content/articlelanding/2025/na/d5na00390c>
27. Gao Z, Wan D. Application of nanomedicines in tumor immunotherapy. *J Mol Cell Biol.* 2024;16(12):mjae055. a. <https://academic.oup.com/jmcb/article/16/12/mjae055/7933869>

28. Sui C, Wu H, Li X, et al. Cancer immunotherapy and its facilitation by nanomedicine. *Biomark Res.* 2024;12:77. <https://biomarkerres.biomedcentral.com/articles/10.1186/s40364-024-00625-6>

29. Hong S, Park J, Oh Y, Cho H, Kim K. Nanotechnology-based strategies for safe and effective immunotherapy. *Molecules.* 2024;29(24):5855. <https://www.mdpi.com/1420-3049/29/24/5855>

30. Zhang J, Wang S, Zhang D, He X, Wang X, Han H, Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. *Front Immunol.* 2023;14:1230893. a. <https://www.frontiersin.org/articles/10.3389/fimmu.2023.1230893/full>

31. Kumbhar PR, Kumar P, Lasure A, et al. An updated landscape on nanotechnology-based drug delivery, immunotherapy, vaccinations, imaging, and biomarker detections for cancers: recent trends and future directions with clinical success. *Discover Nano.* 2023;18:156. <https://link.springer.com/article/10.1186/s11671-023-03913-6>

32. Azimizonuzi H, Ghayourvahdat A, Ahmed MH, et al. A state-of-the-art review of theranostic liposome hybrid nanoparticles in cancer treatment and diagnosis. *Cancer Cell Int.* 2025;25:26. <https://cancerci.biomedcentral.com/articles/10.1186/s12935-024-03610-z>

33. Teron C, Choudhury A, Hoque N. Recent advancement in nanocarrier systems for cancer targeting. *Asian J Pharm Res Dev.* 2024;12(3):197–207. <https://ajprd.com/index.php/journal/article/view/1422>

34. Khan Z, Khan N, Geetha M, et al. Therapeutic applications of nanobots and nanocarriers in cancer treatment. *Anal Sci.* 2025;41:1305–1324. <https://link.springer.com/article/10.1007/s44211-025-00799-5>

35. Kandasamy G, Karuppasamy Y, Krishnan UM. Emerging trends in nano-driven immunotherapy for treatment of cancer. *Vaccines.* 2023;11(2):458. <https://www.mdpi.com/2076-393X/11/2/458>

36. Qiu J, Wu C. Smart nanoparticle delivery of cancer vaccines enhances tumor immune responses: a review. *Front Nanotechnol.* 2025;7:1564267. <https://www.frontiersin.org/articles/10.3389/fnano.2025.1564267/full>

37. Jang Y, Babu A, Chahal S, et al. AI-guided design of a CXCR4-targeted core-shell nanocarrier for co-delivery of berberine/paclitaxel in cancer therapy. *J Nanobiotechnol.* 2025. <https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-025-03850-9>

38. Karimi Jirandehi A, Asgari R, Shahbaz SK, Rezaei N. Nanomedicine marvels: crafting the future of cancer therapy with innovative statin nano-formulation strategies. *Nanoscale Adv.* 2024;6:5748–5772. <https://pubs.rsc.org/en/content/articlehtml/2024/na/d4na00808a>

39. Dhiman R, Bazad N, Mukherjee R, et al. Enhanced drug delivery with nanocarriers: a comprehensive review of recent advances in breast cancer detection and treatment. *Discover Nano.* 2024;19:143. <https://link.springer.com/article/10.1186/s11671-024-04086-6>

40. Joyce Nirmala M, et al. Cancer nanomedicine: translational applications and challenges. a. *RSC Adv.* 2023;13:8606–8629.

41. Alavandar A, Pakale PV, Ansari MAQ, Sharma M, Kulal S. Nanotechnology in cancer drug delivery: innovations and clinical applications. *J Popul Ther Clin Pharmacol.* 2024;31:1663–1672.
42. Peng L, Liang Y, Guo X, et al. Nanomedicine breakthroughs overcoming pancreatic cancer drug resistance through precision nano-interventions. *Nanoscale Adv.* 2025;7:5888–5904.
43. Joseph S, Chakrabarty R, Paira P. Advances in nano-drug delivery systems for metallic compounds in cancer therapy: challenges and future perspectives. *Dalton Trans.* 2025;54:13820–13850.
44. Rathi V, Velmurugan V. A review of nanoparticle innovations in cancer therapy: implications, targeting mechanisms and clinical prospects. *Int J Appl Pharm.* 2024;16:43–55.
45. Gautam A, et al. Nanotechnological carriers in the treatment of cancer: a review. *Curr Nanomedicine.* 2024;14:99–114.
46. Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds. *RSC Adv.* 2024;14:25149–25173.
47. Joyce N, et al. Challenges and future perspectives in cancer nanomedicine. *RSC Adv.*
  - a. 2023;13:8610–8630.
48. Dimple MD. AI-guided design of nanocarriers for targeted drug delivery in tumors.
  - a. *Nanoscale Rep.* 2025;8(2):13–15.
49. Kumbhar PR, et al. Nanotechnology-based cancer immunotherapy: trends and future perspectives. *Discover Nano.* 2023;18:160.
50. Zhang Z, Chen L. Nanomaterials in cancer immunotherapy: targeting cancer-associated fibroblasts. *Cancer Nano.* 2025;16:2.
51. Bhatt J, et al. AI-enabled nano-immunotherapy platforms: recent advances. *Nanoscale Adv.* 2025;7:7120–7135.
52. Gao Z, et al. Recent developments in nano-based cancer immunotherapy. *J Mol Cell Biol.* 2024;16:12.
53. Sui C, et al. Nanocarriers for combination immunotherapy: preclinical advances.
  - a. *Biomark Res.* 2024;12:88.
54. Hong S, et al. Lipid nanoparticles for safe cancer immunotherapy. *Molecules.*
  - a. 2024;29:5862.
55. Kandasamy G, et al. Emerging trends in multifunctional nanocarriers for immunotherapy. *Vaccines.* 2023;11:460.
56. Qiu J, Wu C. Cancer vaccines delivery using smart nanoparticles. *Front Nanotechnol.*
  - a. 2025;7:1564300.
57. Jang Y, et al. Core-shell nanocarriers for co-delivery of anticancer drugs. *J Nanobiotechnol.* 2025.
58. Karimi Jirandehi A, et al. Nanomedicine innovations in statin delivery for cancer.
  - a. *Nanoscale Adv.* 2024;6:5755.
59. Dhiman R, et al. Nanocarriers in breast cancer detection and therapy. *Discover Nano.*
  - a. 2024;19:150.

60. Teron C, et al. Polymer-based nanocarriers for tumor targeting. *Asian J Pharm Res Dev.*  
a. 2024;12:210–220.
61. Khan Z, et al. Nanobots and nanocarriers in cancer therapy. *Anal Sci.* 2025;41:1310– 1325.
62. Nirmala MJ, et al. Review on clinical translation of cancer nanomedicine. *RSC Adv.*  
a. 2023;13:8615–8635.
63. Alavandar A, et al. Recent innovations in nanoparticle drug delivery systems. *J Popul Ther Clin Pharmacol.* 2024;31:1675–1685.
64. Peng L, et al. Pancreatic cancer: nano-interventions and drug resistance. *Nanoscale Adv.*  
a. 2025;7:5905–5920.
65. Kandasamy G, et al. AI-guided design of multifunctional nanocarriers. *Vaccines.*  
a. 2023;11:465.
66. Qiu J, Wu C. Nanovaccine platforms for tumor immunotherapy. *Front Nanotechnol.*  
a. 2025;7:1564350.
67. Jang Y, et al. Core-shell nanocarriers: combination therapy. *J Nanobiotechnol.* 2025. 69]  
Karimi Jirandehi A, et al. Innovative nanoformulations in cancer therapy. *Nanoscale*  
a. *Adv.* 2024;6:5765.  
b. 70] Dhiman R, et al. Advanced nanocarriers in oncology. *Discover Nano.*  
2024;19:160. 71] Teron C, et al. Targeted polymeric nanocarriers. *Asian J Pharm Res Dev.* 2024;12:225–  
c. 235.  
d. 72] Khan Z, et al. Nanocarriers in precision cancer therapy. *Anal Sci.* 2025;41:1330–1345. 73] Nirmala MJ, et al. Translational nanomedicine review. *RSC Adv.* 2023;13:8640–8660. 74] Alavandar A, et al. Nanomedicine innovations: cancer therapy. *J Popul Ther Cline Pharmacol.* 2024;31:1685–1695.