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Sliding window aggregation, In the fast dynamic digital world, the progress of stream processing technology experiences a

Non-FIFO streams, Auto dramatic shift in business operations transforming from a delayed periodic analysis to a

encoder, Dimensionality continuous real-time insight on the fly. The ability to process this “data inmotion “has had a

reduction, Check points significant impact on all the real-time applications. Stream processing marks its foot print in
almost all the application use cases like real-time fraud detection, prediction maintenance,

Received on: enhanced customer experience, dynamic pricing and so on.Instream processing, First-In First-

Out (FIFO) and non-FIFO streams are the two basic paradigms for the data to be processed
challengingly based on the arrival order. Statistical stream aggregation is a crucial process in

18-09-2025 business analytics that summarizes and calculates high volume data using Sliding Window
Aggregation (SWAG) techniques. In stream processing, there is a frequent possibility of

Accepted on: occurrence of non-FIFO streams due to network issues. This research work introduces a time-
efficient non-FIFO SWAG, Active Fix Lite which is an invariant of Active Fix technique that

14-11-2025 handles non-FIFO streams for a statistical stream aggregation process utilizing auto encoders as
a dimensionality reduction tool to reduce the computational load that will be beneficial for

Published on: streaming applications.

17-12-2025

1. Introduction

The recent role of stream processing has evolved from a special tool for real time
applicationstoafoundationalcomponentofdynamicdatadrivenarchitectures. Nowadays it’s no
longer just a matter of handling big data, but also enabling a new class of applications that
can efficientlyreact to events onthe fly inthe dynamic streaming platforms. All real time
applications rely on statistical stream aggregation [1] to bridge a gap betweenthe real time
operational data with long term strategic goals to meet the competitive edge. Streaming
aggregation is a process of computing summary statistics continuously over a group of
unbounded data streams. Unlike batch aggregation that is computed over a finitedata set,
stream aggregation updates incrementally on the dynamic data and produces resultonthe flyas
new dataarrives or old data expires on a defined scope generallya window. As the streams are
infinite, Aggregations are performed ona finite set ofdata using a windowing concept [2-8].
Among various windowing strategies, this work utilizes sliding window strategywhich is the
popular technique used in real time applications. Streaming aggregation techniques utilizes
aggregation and sliding window approach to extract valuable insightsfrom the data streams.
This combined procedure is typically stated as Aggregate Continuous Query (ACQ)[9]. In the
context of stream aggregation techniques, the right solution to extract abstract knowledge
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from the raw data for analytical purposes is Sliding Window Aggregation (SWAG). For a
statistical stream aggregation process, the Stream processing system deals the data streams
differently based on the arrival order. Data streams that are processed in the same sequence
order from the source to thestream processing engine are termed as In order streams And that
change in sequence are termed as out of order streams. Outoforderness in streamaggregation
techniques is a significant challenge to be dealt onthe fly to maintain accurate real time
analytics for making proactive decisions. A common solution to deal with out of order
streams is by the use of watermarks, a time based control mechanism. Watermarks are used as
a time-stamped signal that triggers the system when to close the window and produce the
result. It helps to balance latency and accuracy of the system.

All stream processing platforms face a crucial challenge of maintaining a resource
efficient, scalable and reliable system. To make proactive decisions instantaneously as the
dataarrives,timecomplexity plays avitalroleanddirectlycausesanimpact onthe accuracy,
resource usage and latencyofthe system. The objective ofthis work is to develop a time
efficient SWAG technique to deal with the non-FIFO streams in an optimised manner. This
work utilizes Active Fix, a non-FIFO SWAG technique developed bykalyaniand safish mary
[10] to handle out-of-order streams using a control point based indexing. Active FixLite
technique is an enhanced and an invariant ofActive Fix. It is developed by reducing the
dimensionalityofthe input datainto avectorrepresentationusing AE and thencomputing the
stream aggregation with Active Fix approach. Thus the proposed Active Fix Lite technique
reduces the computational load as the reduced vector representation is alone incrementally
updated instead of entire window elements during a window slide. The performance of this
technique is measured using the time complexity metric and the experimental results are
proved in an optimized manner.

2. Related Works

Rao et al.[11], designed a novel framework for anomaly detection in data streaming
that meet the two key challenges with incremental learning of concept drift adaptation. The
modelupdatesthe learning in adaptive environments over time. Also remain effective during
concept drift.it is anauto encoder based built in drift detection mechanismthat adapt to data
distribution changes without the assistance of labeled data.

Kim et al. [12], proposed a multi module unsupervised outlier detection Module
particularly focusing on Indoor Air Quality (IAQ). It is a hybrid deep learning method that
combinesLSTM(LongShortTermMemory)Encoderwithensemblingmethod. LSTM encoder
learns to reconstruct time series data using reconstruction error concept and extract the latent
features. A one class SVM is trained on these features to generate a second layer. Ensemble
method combines theoutputsofthe two layer detectorsand provides a stable reliable detection
rule with a single model.

Ahmed et al. [13], present a hybrid Convolutional auto encoder based model for real
time anomaly deduction. The key feature of this work is the implementation of dynamic
thresholding to adapt changes in data pattern using statistical methods like mahalanobis
distance and moving averages. This model provides a significant improvement in accuracy
and alert unusual data moments,which is crucial to preventfinancial loss and systemfailures.

Zervoudakiset al. [14], proposed a hybrid framework with auto encoder and attention
mechanism for time series and anomaly detection. In this model, AE extracts local structural
patterns (usually in windows) of time series data and the attention mechanism as in
transformermodelsisusedtoidentifyandlearnlongtermtemporalrelationshipsand
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dependencies. This model implements an improved thresholding method based on statistical
analysis of reconstruction error.

Hassanet al. [15], proposed an unsupervised multivariate time series anomaly
detection framework with attention based ConvLSTM AE with dynamic thresholding. The
attention mechanism is used to learn both spatial patterns and temporal dependencies. Andthe
dynamic thresholding makes the system adapt to variations in data thus reducing false alarms.

Zhanget al. [16], introduced a hybrid anomaly detection architecture that combines
denoising AE with memory module. Instead of depending solely on AE’s learned
representation, memory explicitly stores and manages normal trends of data from the recent
past. Memory also allows the system to adapt to data distribution changes.

Paprockiet al. [17], implemented a deep learning based framework for detecting
outliers in data stream patterns. This model works with the three phases namely data pre-
processing, Deep Neural Network (DNN) training and detection phases.In the data pre-
processing phase, the raw data is cleaned and prepared by normalising the data into a suitable
format for learning. TheDNNtraining phasetrainsthepre-processor datausing a multi-layer
layerDNNthatlearnssubtitlepatternsandrelationshipsinthedata.Inthedetection phase, the model
detects the anomalous data patterns and flags it as an outlier.

Liu et al. [18], proposed a robust deep learning model with the Temporal
Convolutional Network (TCN) AE model. TCN Capture long range dependency and data
patterns from time series data in mobile devices and analyse for detecting anomalouspatterns.
This model continuously updates its knowledge with adaptive learning mechanism making
the system vulnerable to malicious data changes

Khan et al. [19], proposed a hybrid framework combining asymmetric Stacked AE
(SAE) with one class DNN Classifier. This model offers a high detection rate in 10T security
with minimal false positives. It acts as a dimensionality reduction tool and detect using one
class DNN Classifier that trains on normal data and learns to differentiate between normaland
anomalous data patterns. The work provides a reliable, efficient and high accurate solution for
challenges in 10T security protecting against cyber threats.

Kingmaet al. [20], addressa major probleminprobabilistic modelling. They introduce
the concept of Variational AE (VAE) Bayesian inference and DNN to efficiently train the
complex data distributions. The Auto Encoding Variational Bayes (AEVB) Algorithm is
trained to learn the previous of generating model from some underlying hidden (or latent)
variables. This algorithm uses a probabilistic encoder and decoder mechanism.

3. Overview of Active Fix Technique

Active Fix is a scalable efficient fragment based bidirectional indexing approach to
perform streaming analytics over out-of-order streams using incremental SWAG technigue.
Similar tothecheckpoint based indexingNon-FIFOSWAGtechnique CPiX implementedby
Bou et al.[21], Active Fix also maintains a similar data structure to hold the oldest fragment
data in a binary tree and a bidirectional array structure for the remaining fragment data.Unlike
existing approaches that eagerly aggregate the intermediate results, CPiX maintainsthe
intermediate results in an on-demand manner.

3.1 General Structure and Working of Active Fix Technique

Inspired by the performance of CPiX, Active Fix is developed to handle non-FIFO
streams in an optimized manner. The Fig. 1 depicts the general structure of Active Fix to
execute a window of elements by ACQ with a window size N and slide size S.
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Fig.1 General structure of Active Fix algorithm

For a window size N and slide size S, n elements from the data source are ingested in
to the window and aggregated as p values in ‘n’ indexes based on the window slide
and are represented as p_value. The p values in turnare grouped into k controlpoints.
In order to handle the late arrival records, control points are maintained for the
window elements in the re-computation of aggregation on the affected fragmentalone.
The number of control points to accumulate the p values is chosen in such a way
where one-third part of p values forms a control point with the tree structure
represented as f1 fragment structure. The remaining two-third part of p values formthe
control points with an array structure represented as 2 fragment structure asshown in
Fig. 1. Thus, the entire fragment structure ofthe window is considered as f1 and 2
structures where fl represents the binary tree structure maintaining oldest control
point and f2 represents the array structure with remaining control points.
Similar to CPix, Active Fix can use smallest possible control point k if the
characteristics of non-FIFO are unknown; otherwise can use largest possible control
point.
The size of all the control points is equal when number of p values is exactly divided
by k. If not, the size of the last control point alone differs.
In the tree structure which denotes f1 structure, the p values represent the leaf nodes,
and its aggregated values represent the internal nodes. The root node holds the
aggregated value of entire f1 fragment and is denoted as f1-agg.
The remaining f-values in the f2 fragment are aggregated and maintained as cp-value
(one for each control point) as shown in Fig. 1. The cp-values are considered as
control points which acts as the control structures to re-compute only the affected
fragment that holds the late arrival records. The aggregation of cp-values ismaintained
as f2-agg for the entire f2 fragment.

On execution of ACQ on demand by the user, the aggregation of fl-agg and
f2-agg values produce the result of the ACQ.

Proposed Active Fix Lite Technique
In the context of SWAG techniques, the improvement in reducing the time complexity

relies on the reduction of computational load for aggregation and analytical purposes. In
stream aggregation, time management is not only a resource managed feature, but also act as
a central pillar of the system that controls the system’s ability to betimely, accurate and
scalable in real time applications. The proposed technique aims to handle non- FIFO streams
in stream aggregation process with high dimensionality data in a time efficient manner. This

1337



http://www.thebioscan.com/

mentay,
8 <

wationg,
£,
Te120%

A S'pw/ LCBLOAWI/ 20(4): 1334-1347, 2025 www.thebioscan.com

AN INTERNATIONAL QUARTERLY JOURNAL OF LIFE SCIENCES

technique utilizes auto encoders to address the key challenge of dimensionality reduction in
stream processing. Auto encoders are atype of neural network which are trained with the
reduced vector representation of data in an unsupervised way. It is often used to identify the
anomalous patterns of data streams in real time. In this technique auto encoder acts as a
dimensionality reduction tool that compress the input data into a low dimensional
representation called latent space. In this SWAG technique, the function of latent space is to
improve the efficiency by reducing the computational load. Thus this technique makes use of
smaller manageable latent space representation of data within a window instead of the entire
high dimensional input data for processing.

“Generally without the use of latent space, the time complexity of the SWAG
techniqueis often proportionaltoWindow size (N)and thenumberofdata dimensions (D).

i.e.0 (N.D).By the use of latent space with much smaller data dimension (d << D), the new
time complexity would be O (N. d). This drastic reduction makes real time Analytics more
feasible in this SWAG technique.

In this work, an invariant of Active Fix Technique named Active Fix Lite is
implemented in such away that the SWAG utilizes auto encoders to allow Active Fix
technique to perform statistical aggregation based on the latent vector representation of the
data points instead ofthe entire window’s raw data.This efficient incrementalupdates in
Active Fix Lite makes it much faster and more memory efficient than the state of art of
solutions.

4.1  Architectural Design of Active Fix Lite

The architectural choice of auto encoder in the stream aggregation technique is crucial
for its effectiveness.The architecturaldesign of AE in the streamprocessing systemconsists of
two main components an encoder and a decoder. The architectural framework of sliding
window aggregator with process flow utilising AE can be depicted using the figure Fig.2.

Stream Processing Engine

Windowing
(Sliding window)

Analytical
output
i Encoder Latent Decoder Iaye'r

P (Reduce Space (Output (Real-time

S[)ata Dimensality) S Reconstruction) analytics,
Streams Reporti

porting,

Alerting)

Y

Y

Y

A 4

Sliding Window
Aggretator
(Aggregation operation)

Fig.2Architectural design of an auto encoder based non-FIFO SWAG technique Active FixLite

Input layer

In the context of statistical stream aggregation technique, relevant input data extracted
from the data sources is fed to the stream processing engine for analytical purposes.
Stream processing engine

The Stream Processing Engine (SPE) acts as a central nervous system of the stream
aggregation technique. The input data ingested into the SPE is achunk of data from the stream
which is fed to the time series window using a sliding window strategy for the computation of
statistical aggregation process.

Autoencoder
Auto encoders are the type of neural networks designed to learn anomalous data
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patterns froma reduced formof data. Theycontain two main components namely an encoder
and a decoder.
Encoder:Data from each window is sent to the encoder toreduce the raw input into a
low dimensional vector representation called latent space representation.
Latent space:Latent space is a part of the encoder layer which acts as the interface
between the encoder and the decoder. It is the dimensionality reduced output of the
encoder layer represented as a bottle neck ofa low dimensional vector presentation of
original data. It is the most crucial part of the approach where efficiency is gained by
performing statistical aggregation on this compact meaningful representation instead
of the entire window data.

Sliding Window Aggregator:

The SPE performs the data stream process in this work using a sliding window
aggregator for computing the statistical aggregation. This work utilizes the Active Fix model
as a sliding window aggregator technique. When the window slides, Active Fix aggregator
performs its computation with incremental updates only on the latent vector representation
between the evicted and the new data. Thus it avoids recalculating all the high dimensional
data in the window by reducing the computational load drastically and improves time
complexity of the approach. The aggregated latent vector representation is fed to the latent
space for subsequent processing.

Decoder:The aggregated latent vector representation from the latent space is sent to
the decoderforreconstructionofthe original highdimensionaldata. The reconstructedoutput
data is the final output of the auto encoder.

Output layer:

The time complexity of the statistical aggregation process done by the aggregator is
fed to the output layer for reporting, alerting or analytical purposes. Also the reconstructed
final output of the AE can be compared with that of original data and re construction error can
be found. A lower error wouldindicate that the model is a good representation of latentspace.

4.2 ActiveFixLite MainAlgorithm

##l oadCSVdata

Readquantity,Unit_Price

Intializewindow_size,slide_size,nindex,ckpoint,threshold ##

Tree Structure Generation

[—Foriinrange(nindex):

| I—Createwindowz[start_tirne,end_time]

| I—Assigngroup_idZﬂoor(i/ ckpoint)

| L—Storenode:[start,end,group_id,ckpoint_id,hr_start,hr_end]
L_Result:Treeofwindowswithgroup/ckpoint IDs

##1nitialize Autoencoder Model
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I—InputLayer (2D:Quantity&UnitPrice)
I—HiddenLayers:Encoder —Bottleneck —Decoder
[—Optimizer: Adam, Loss:MSELoss
L Device:UseCUDAifavailable
##MainLoopOver EachTimeStep
Foreachrecord(Quantity,UnitPrice, Time):
—Appendrawvaluesto'raw’, ‘rawl", times’
I—SearchTreetoﬁndwindow forcurrenttime:
|—Iffound—>Append[Quantity, Price]tothatwindow
|  Lfnotfound— BDelayorrebuildtree(fallbacklogic)
I——iﬁhe windowhas>20records:
I——Converttotensor —ForwardpassthroughAutoencoder
I-—Compute ReconstructionLoss=MSE(input,output)
|— IfLoss >threshold:
I—AnomalyDeteCted
I—Aggregationcompute(ActiveFix)
[—Label= 1(Anomaly)
| L—AppendFixedValueto fixed'
L—Else:
—NoAnomaly
I—Appendoriginalvalueto‘fixed‘
L—Label=0
L—RetrainAutoencoder(fewepochs) usingcurrentwindow
##Post-ProcessingasReport Generationwithsmalland largecheckpoints ##
keeping slide timing constant
I—Plotvaryingwindowtimings\/stimecomplexityovertime H
keeping window timing constant

I—Plotvarying slidetimingsVstimecomplexityover time
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5. Performance Evaluation

The effectiveness of the proposed Active Fix Lite algorithm is evaluated
experimentally based on control points that act as a check point mechanism. In streaming
applications dealing with stream aggregation, check points are snapshots of currentprocessing
state taken at regular intervals.Check points play a crucial role allowing the systemto function
ina fault tolerant, accurate, consistent and scalable manner. Thus, even in case of system
failure, it can recover the process from the last good state. It also ensures results to be in an
accurate and consistent manner.

In this research work, control points are used to handle the late arrival data for
improving the efficiency of the system. The computational time of the data stream process is
evaluated

Usingsmallestcontrolpointas

cp=yn/In(10)............ Eqn.1 and

Usinglargestcontrolpointas

cp=n/alln(10)................ Eqgn.2

All stream aggregation techniques generally rely on the time based metric, the Time
Complexity (TC) which is used to measure the time requirement of the computational
resourceofa technique to process each new data (usually each new window ofelements). TC is
used as a crucial metric to measure the efficiencyof a technique. A low TC is essential for the
stream aggregation techniques in order to keep up with the continuous arrival of data. When
the processing time for each data exceeds the arrival rate, itleads to processingbacklog
resulting in increased latency and data loss. When the volume or velocity of data streams
increase, TC causes a significant impact on the performance of the processingsystem. As the
size of the inputin streaming application isn'tfixed, the time complexity of the aggregation
technique is generally measured for each window of elements instead of the entire stream.

Based On the size ofthe input, TC is often expressed using Big O notation describing
the worst case running time of a technique. Generally it is defined as a function of input.

In this work, TC is Measured as a function in terms of input data, usually eachnew
window ofelements. TC is measured For varying window and slide timings based onthe two
scenario i.e., for small and large control points.

In case of small control points, TC is measured with the following function
represented as Eqn.3

F()=( 7)+3%P ... Eqn.3

Similarly incase of large control points, the TC is measured with the following
function represented as Eqn.4

F() =P+ 1) *xlog (| 7| ) Eqn.4

Where

1341


http://www.thebioscan.com/

- S'ﬁq, %ioacam 20(4): 1334-1347, 2025 www.thebioscan.com

AN INTERNATIONAL QUARTERLY JOURNAL OF LIFE SCIENCES

n is the number of partitions of a window element

K is the number of control points and

P denotes f1 and 2 partitions of the control points
Fig.1shows the parameters n, k, pin detail in section3.

6. Experimental Results and Discussions

The research work utilizes Kaggle datasets which are open-source public data
collections generally used for research, training, prediction and so on. These datasets are a
kind of synthetic data sets that are of great use for data science practices with machine
learning models. Data is extracted from On-line Retail store data from kaggle for this work.
Outofnearly33,000 transactionaldata, 901 datatransactions are considered for experimental
evaluation.

6.1 ScalabilityperformancewithSmallControlpoints

ThescalabilityperformanceofActiveFixLiteapproachisevaluatedagainstActive Fix
working using small control points. Results are taken for the following cases:

Casel:By increasingthewindowtimingintervalfora constantslide timing
interval

In case of smaller control points, for a constant slide time interval of 3000 seconds
with varying window timing intervals 18000s, 20000s, 22000 and so on, the time complexity
is measured and depicted using the following Table 1 and figure Fig. 3.

TablelScalabilityperformanceofActiveFixVs.ActiveFix
Lite with small control points for Slide timing of 3000 s

; TimeComplexity (ins
Window plexity (ins) SmallControlPoints-SlideTime

Timings A el
© 9 ActiveFix ACtII_\g'feFIX 0 30005
18000 6 6 15
20000 6 6
10

22000 75 7.01
24000 11.09 7.82 >
26000 11.09 7.82 0
30000 14 07 9 15 0 5000 10000150002000025000300003500040000

) ' —e— SmallControlPointsSlide Time3000s TimeComplexity(ins)

ActiveFi

32000 14.07 9.15 —— Sr(r:v:\\I/IeCc;;(trolPointsSIideTime3000sTimeCompIexity(ins)
34000 17.84 10.24 ActiveFixLite

Fig.3ScalabilityperformanceofActiveFixVs.ActiveFix
LitewithsmallcontrolpointsforSlidetimingof3000s

Case2: Byincreasing theslide timing intervalfora constantwindowtiminginterval.

In case of smaller control points, keeping the window time interval of 34000 seconds
constant for varying slide timing intervals 2000s, 3000s, 4000s and so on, the timecomplexity
is measured and depicted using the Table 2 and figure Fig.4.

————————
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30

SmallControlPoints-
WindowTime34000s

20

10

2000 3000 4000 5000

== SmallControlPointsWindowTime34000sTime

Slide

Timings TimeComplexity (ins)

(ins)

Active Fix ActiveFixLite

2000 26.56 21.098
3000 17.84 10.242
4000 13.59 7.82
5000 6 6

Complexity (in s) Active Fix

=== SmallControlPointsWindowTime34000sTime

Complexity(ins)ActiveFixLite

Fig.4ScalabilityperformanceofActiveFixvs.ActiveFix
Litewithsmallcontrolpointsforwindowtiming of
3000s with varying slide timings

From the observations of Table 1, Table 2 and Fig.3, Fig.4, it is clear that Active Fix Lite
outperforms Active Fix in computational time for varying window timings when small
control points are chosen.

6.2

Scalability performance with Large Control points

The scalability performance of Active FixLite approach is evaluated against Active
Fix working using large control points. Results are taken for the following cases

Casel: Byincreasingthewindowtimingintervalfora constantslidetiminginterval.
In case of larger control points, keeping the slide time interval of 3000 seconds for
varying window timing intervals 18000s, 20000s, 22000s and so on, the time complexity is
measured and depicted using the Table 3 and figure Fig.5

Table 3

scalability
controlpointsforSlidetimingof3000s

performance

Window Time C(:i?]ns";plexny
T|r?sl)ngs Ac'give Actiye
Fix FixLite
8000 7.88 2.027
20000 7.88 2.027
22000 8.72 2.018
24000 9.39 2.820
26000 9.39 2.820
30000 12.90 9.158
32000 12.90 9.158
34000 14.19 4.242

of Active Fix vs.Active Fix Lite with large
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LargeControlPoints-Slidetime

15
3000s
10
5
0
0 10000 20000 30000 40000
—&— LargeControlPointsSlidetime3000s TimeComplexity(ins)
Active Fix

—e&— LargeControlPointsSlidetime3000sTimeComplexity(ins)
ActiveFixLite

www.thebioscan.com

Fig.5ScalabilityperformanceofActiveFixvs.ActiveFixLite with large control points for Slide timing

of 3000 s

Case2: By increasing the slide timing interval for a constant window timing interval.

In case of larger control points, keeping the window time interval of 34000 seconds
constant for varying slide timing intervals 2000s, 3000s, 4000s and so on, the timecomplexity

is measured and depicted using the Table 4 and figure Fig.6.

Tabled scalability performance of Active Fix vs. Active Fix Lite with large control

points for window timing of 34000s s

Slide TimeComplexity

Timings (ins)

(ins)

ActiveFix | Active

FixLite

2000 47.55 14.098

3000 20.84 4.242

4000 16.09 2.820

5000 12 2.027
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LargeControlPoints-WindowTime
50 34000s

40
30

20

0 S~

2000 3000 4000 5000

= | argeControlPointsWindowTime34000s TimeComplexity (in s)
Active Fix

=== | argeControlPointsWindowTime34000s TimeComplexity
(ins)ActiveFix Lite

Fig.6ScalabilityperformanceofActiveFixvs.ActiveFixLite with large control points for window
timing of 34000s for varying slide timing

From the observations of Table 3, Table 4 and Fig. 5, Fig. 6, it is clear that Active Fix Lite outperforms
Active Fix in computational time for varying slide timings when large control points are chosen.
7. Conclusion and Future Enhancement
The incremental SWAG technique Active FixLite isdevelopedto handle non-
FIFO streams using a sliding window aggregator approach and auto encoders for a resource
efficient stream processing system. Time complexity is the fundamental metric used for
measuring the performance of stream aggregation technique. In the context of stream
processing, it helps to choose the techniques that are fast and more energy efficient. The
performance of Active Fix Lite technique is experimentally tested using small and largecheck
points for varying window and slide timings in order to measure the time complexity. The
proposed Active Fix Lite technique outperforms Active Fix technique by reducing the
computational load and is suitable for applications with adaptive window environments.

The future enhancement for this research work can be concentrated to measure the
amount of out of orderness and train the model efficiently using machine learning techniques.
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