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ABSTRACT  
 In the fast dynamic digital world, the progress of stream processing technology experiences a 

dramatic shift in business operations transforming from a delayed periodic analysis to a 

continuous real-time insight on the fly. The ability to process this “data inmotion “has had a 

significant impact on all the real-time applications. Stream processing marks its foot print in 

almost all the application use cases like real-time fraud detection, prediction maintenance, 

enhanced customer experience, dynamic pricing and so on.Instream processing, First-In First-

Out (FIFO) and non-FIFO streams are the two basic paradigms for the data to be processed 

challengingly based on the arrival order. Statistical stream aggregation is a crucial process in 

business analytics that summarizes and calculates high volume data using Sliding Window 

Aggregation (SWAG) techniques. In stream processing, there is a frequent possibility of 

occurrence of non-FIFO streams due to network issues. This research work introduces a time-

efficient non-FIFO SWAG, Active Fix Lite which is an invariant of Active Fix technique that 

handles non-FIFO streams for a statistical stream aggregation process utilizing auto encoders as 

a dimensionality reduction tool to reduce the computational load that will be beneficial for 

streaming applications. 

 

 

 

1. Introduction 

The recent role of stream processing has evolved from a special tool for real time 

applicationstoafoundationalcomponentofdynamicdatadrivenarchitectures. Nowadays it’s no 

longer just a matter of handling big data, but also enabling a new class of applications that 

can efficientlyreact to events onthe fly inthe dynamic streaming platforms. All real time 

applications rely on statistical stream aggregation [1] to bridge a gap betweenthe real time 

operational data with long term strategic goals to meet the competitive edge. Streaming 

aggregation is a process of computing summary statistics continuously over a group of 

unbounded data streams. Unlike batch aggregation that is computed over a finitedata set, 

stream aggregation updates incrementally on the dynamic data and produces resultonthe flyas 

new dataarrives or old data expires on a defined scope generallya window. As the streams are 

infinite, Aggregations are performed ona finite set ofdata using a windowing concept [2-8]. 

Among various windowing strategies, this work utilizes sliding window strategywhich is the 

popular technique used in real time applications. Streaming aggregation techniques utilizes 

aggregation and sliding window approach to extract valuable insightsfrom the data streams. 

This combined procedure is typically stated as Aggregate Continuous Query (ACQ)[9]. In the 

context of stream aggregation techniques, the right solution to extract abstract knowledge 
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from the raw data for analytical purposes is Sliding Window Aggregation (SWAG). For a 

statistical stream aggregation process, the Stream processing system deals the data streams 

differently based on the arrival order. Data streams that are processed in the same sequence 

order from the source to thestream processing engine are termed as In order streams And that 

change in sequence are termed as out of order streams. Outoforderness in streamaggregation 

techniques is a significant challenge to be dealt onthe fly to maintain accurate real time 

analytics for making proactive decisions. A common solution to deal with out of order 

streams is by the use of watermarks, a time based control mechanism. Watermarks are used as 

a time-stamped signal that triggers the system when to close the window and produce the 

result. It helps to balance latency and accuracy of the system. 

All stream processing platforms face a crucial challenge of maintaining a resource 

efficient, scalable and reliable system. To make proactive decisions instantaneously as the 

dataarrives,timecomplexity plays avitalroleanddirectlycausesanimpact onthe accuracy, 

resource usage and latencyofthe system. The objective ofthis work is to develop a time 

efficient SWAG technique to deal with the non-FIFO streams in an optimised manner. This 

work utilizes Active Fix, a non-FIFO SWAG technique developed bykalyaniand safish mary 

[10] to handle out-of-order streams using a control point based indexing. Active FixLite 

technique is an enhanced and an invariant ofActive Fix. It is developed by reducing the 

dimensionalityofthe input datainto avectorrepresentationusing AE and thencomputing the 

stream aggregation with Active Fix approach. Thus the proposed Active Fix Lite technique 

reduces the computational load as the reduced vector representation is alone incrementally 

updated instead of entire window elements during a window slide. The performance of this 

technique is measured using the time complexity metric and the experimental results are 

proved in an optimized manner. 

 

2. Related Works 

 
Rao et al.[11], designed a novel framework for anomaly detection in data streaming 

that meet the two key challenges with incremental learning of concept drift adaptation. The 
modelupdatesthe learning in adaptive environments over time. Also remain effective during 
concept drift.it is anauto encoder based built in drift detection mechanismthat adapt to data 

distribution changes without the assistance of labeled data. 

Kim et al. [12], proposed a multi module unsupervised outlier detection Module 

particularly focusing on Indoor Air Quality (IAQ). It is a hybrid deep learning method that 

combinesLSTM(LongShortTermMemory)Encoderwithensemblingmethod. LSTM encoder 

learns to reconstruct time series data using reconstruction error concept and extract the latent 

features. A one class SVM is trained on these features to generate a second layer. Ensemble 

method combines theoutputsofthe two layer detectorsand provides a stable reliable detection 

rule with a single model. 

Ahmed et al. [13], present a hybrid Convolutional auto encoder based model for real 

time anomaly deduction. The key feature of this work is the implementation of dynamic 
thresholding to adapt changes in data pattern using statistical methods like mahalanobis 
distance and moving averages. This model provides a significant improvement in accuracy 

and alert unusual data moments,which is crucial to preventfinancial loss and systemfailures. 

Zervoudakiset al. [14], proposed a hybrid framework with auto encoder and attention 
mechanism for time series and anomaly detection. In this model, AE extracts local structural 
patterns (usually in windows) of time series data and the attention mechanism as in 
transformermodelsisusedtoidentifyandlearnlongtermtemporalrelationshipsand 
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dependencies. This model implements an improved thresholding method based on statistical 

analysis of reconstruction error. 

Hassanet al. [15], proposed an unsupervised multivariate time series anomaly 
detection framework with attention based ConvLSTM AE with dynamic thresholding. The 
attention mechanism is used to learn both spatial patterns and temporal dependencies. Andthe 

dynamic thresholding makes the system adapt to variations in data thus reducing false alarms. 

Zhanget al. [16], introduced a hybrid anomaly detection architecture that combines 
denoising AE with memory module. Instead of depending solely on AE’s learned 

representation, memory explicitly stores and manages normal trends of data from the recent 
past. Memory also allows the system to adapt to data distribution changes. 

Paprockiet al. [17], implemented a deep learning based framework for detecting 
outliers in data stream patterns. This model works with the three phases namely data pre- 
processing, Deep Neural Network (DNN) training and detection phases.In the data pre- 
processing phase, the raw data is cleaned and prepared by normalising the data into a suitable 

format for learning.TheDNNtraining phasetrainsthepre-processor datausing a multi-layer 
layerDNNthatlearnssubtitlepatternsandrelationshipsinthedata.Inthedetection phase, the model 
detects the anomalous data patterns and flags it as an outlier. 

Liu et al. [18], proposed a robust deep learning model with the Temporal 
Convolutional Network (TCN) AE model. TCN Capture long range dependency and data 
patterns from time series data in mobile devices and analyse for detecting anomalouspatterns. 

This model continuously updates its knowledge with adaptive learning mechanism making 
the system vulnerable to malicious data changes 

Khan et al. [19], proposed a hybrid framework combining asymmetric Stacked AE 

(SAE) with one class DNN Classifier. This model offers a high detection rate in IoT security 

with minimal false positives. It acts as a dimensionality reduction tool and detect using one 

class DNN Classifier that trains on normal data and learns to differentiate between normaland 

anomalous data patterns. The work provides a reliable, efficient and high accurate solution for 

challenges in IoT security protecting against cyber threats. 

Kingmaet al. [20], addressa major probleminprobabilistic modelling. They introduce 

the concept of Variational AE (VAE) Bayesian inference and DNN to efficiently train the 

complex data distributions. The Auto Encoding Variational Bayes (AEVB) Algorithm is 
trained to learn the previous of generating model from some underlying hidden (or latent) 

variables. This algorithm uses a probabilistic encoder and decoder mechanism. 

 

3. Overview of Active Fix Technique 

Active Fix is a scalable efficient fragment based bidirectional indexing approach to 

perform streaming analytics over out-of-order streams using incremental SWAG technique. 

Similar tothecheckpoint based indexingNon-FIFOSWAGtechnique CPiX implementedby 

Bou et al.[21], Active Fix also maintains a similar data structure to hold the oldest fragment 

data in a binary tree and a bidirectional array structure for the remaining fragment data.Unlike 

existing approaches that eagerly aggregate the intermediate results, CPiX maintainsthe 

intermediate results in an on-demand manner. 

 

3.1 General Structure and Working of Active Fix Technique 

Inspired by the performance of CPiX, Active Fix is developed to handle non-FIFO 

streams in an optimized manner. The Fig. 1 depicts the general structure of Active Fix to 

execute a window of elements by ACQ with a window size N and slide size S. 
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Fig.1 General structure of Active Fix algorithm 

 For a window size N and slide size S, n elements from the data source are ingested in 

to the window and aggregated as p values in ‘n’ indexes based on the window slide 

and are represented as p_value. The p values in turnare grouped into k controlpoints. 

In order to handle the late arrival records, control points are maintained for the 

window elements in the re-computation of aggregation on the affected fragmentalone. 

 The number of control points to accumulate the p values is chosen in such a way 

where one-third part of p values forms a control point with the tree structure 

represented as f1 fragment structure. The remaining two-third part of p values formthe 

control points with an array structure represented as f2 fragment structure asshown in 

Fig. 1. Thus, the entire fragment structure ofthe window is considered as f1 and f2 

structures where f1 represents the binary tree structure maintaining oldest control 

point and f2 represents the array structure with remaining control points. 

 Similar to CPix, Active Fix can use smallest possible control point k if the 
characteristics of non-FIFO are unknown; otherwise can use largest possible control 

point. 

 The size of all the control points is equal when number of p values is exactly divided 

by k. If not, the size of the last control point alone differs. 

 In the tree structure which denotes f1 structure, the p values represent the leaf nodes, 
and its aggregated values represent the internal nodes. The root node holds the 

aggregated value of entire f1 fragment and is denoted as f1-agg. 

 The remaining f-values in the f2 fragment are aggregated and maintained as cp-value 

(one for each control point) as shown in Fig. 1. The cp-values are considered as 

control points which acts as the control structures to re-compute only the affected 

fragment that holds the late arrival records. The aggregation of cp-values ismaintained 

as f2-agg for the entire f2 fragment. 
On execution of ACQ on demand by the user, the aggregation of f1-agg and 

f2-agg values produce the result of the ACQ. 

 

4. Proposed Active Fix Lite Technique 

In the context of SWAG techniques, the improvement in reducing the time complexity 

relies on the reduction of computational load for aggregation and analytical purposes. In 

stream aggregation, time management is not only a resource managed feature, but also act as 

a central pillar of the system that controls the system’s ability to betimely, accurate and 

scalable in real time applications. The proposed technique aims to handle non- FIFO streams 

in stream aggregation process with high dimensionality data in a time efficient manner. This 
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technique utilizes auto encoders to address the key challenge of dimensionality reduction in 

stream processing. Auto encoders are atype of neural network which are trained with the 

reduced vector representation of data in an unsupervised way. It is often used to identify the 

anomalous patterns of data streams in real time. In this technique auto encoder acts as a 

dimensionality reduction tool that compress the input data into a low dimensional 

representation called latent space. In this SWAG technique, the function of latent space is to 

improve the efficiency by reducing the computational load. Thus this technique makes use of 

smaller manageable latent space representation of data within a window instead of the entire 

high dimensional input data for processing. 

`Generally without the use of latent space, the time complexity of the SWAG 

techniqueis often proportionaltoWindow size (N)and thenumberofdata dimensions (D). 

i.e.O (N.D).By the use of latent space with much smaller data dimension (d << D), the new 

time complexity would be O (N. d). This drastic reduction makes real time Analytics more 

feasible in this SWAG technique. 

In this work, an invariant of Active Fix Technique named Active Fix Lite is 

implemented in such away that the SWAG utilizes auto encoders to allow Active Fix 

technique to perform statistical aggregation based on the latent vector representation of the 

data points instead ofthe entire window’s raw data.This efficient incrementalupdates in 

Active Fix Lite makes it much faster and more memory efficient than the state of art of 

solutions. 

4.1 Architectural Design of Active Fix Lite 

The architectural choice of auto encoder in the stream aggregation technique is crucial 

for its effectiveness.The architecturaldesign of AE in the streamprocessing systemconsists of 

two main components an encoder and a decoder. The architectural framework of sliding 

window aggregator with process flow utilising AE can be depicted using the figure Fig.2. 

 

Fig.2Architectural design of an auto encoder based non-FIFO SWAG technique Active FixLite 

Input layer 

In the context of statistical stream aggregation technique, relevant input data extracted 

from the data sources is fed to the stream processing engine for analytical purposes. 

Stream processing engine 

The Stream Processing Engine (SPE) acts as a central nervous system of the stream 

aggregation technique. The input data ingested into the SPE is achunk of data from the stream 

which is fed to the time series window using a sliding window strategy for the computation of 

statistical aggregation process. 

 

Autoencoder 

Auto encoders are the type of neural networks designed to learn anomalous data 
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patterns froma reduced formof data. Theycontain two main components namely an encoder 

and a decoder. 

Encoder:Data from each window is sent to the encoder toreduce the raw input into a 

low dimensional vector representation called latent space representation. 

Latent space:Latent space is a part of the encoder layer which acts as the interface 

between the encoder and the decoder. It is the dimensionality reduced output of the 

encoder layer represented as a bottle neck ofa low dimensional vector presentation of 

original data. It is the most crucial part of the approach where efficiency is gained by 

performing statistical aggregation on this compact meaningful representation instead 

of the entire window data. 

 

Sliding Window Aggregator: 

The SPE performs the data stream process in this work using a sliding window 

aggregator for computing the statistical aggregation. This work utilizes the Active Fix model 

as a sliding window aggregator technique. When the window slides, Active Fix aggregator 

performs its computation with incremental updates only on the latent vector representation 

between the evicted and the new data. Thus it avoids recalculating all the high dimensional 

data in the window by reducing the computational load drastically and improves time 

complexity of the approach. The aggregated latent vector representation is fed to the latent 

space for subsequent processing. 

Decoder:The aggregated latent vector representation from the latent space is sent to 

the decoderforreconstructionofthe original highdimensionaldata. The reconstructedoutput 

data is the final output of the auto encoder. 

Output layer: 

The time complexity of the statistical aggregation process done by the aggregator is 

fed to the output layer for reporting, alerting or analytical purposes. Also the reconstructed 

final output of the AE can be compared with that of original data and re construction error can 

be found. A lower error wouldindicate that the model is a good representation of latentspace. 

 

4.2 ActiveFixLite MainAlgorithm 

 

##LoadCSVdata 

Readquantity,Unit_Price 

Intializewindow_size,slide_size,nindex,ckpoint,threshold ## 

◻ Tree Structure Generation 

├─Foriinrange(nindex): 

│ ├─Createwindow:[start_time,end_time] 

│ ├─Assigngroup_id=floor(i/ckpoint) 

│ └─Storenode:[start,end,group_id,ckpoint_id,hr_start,hr_end] 

└─Result:Treeofwindowswithgroup/ckpoint IDs 

##InitializeAutoencoder Model 
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├─InputLayer (2D:Quantity&UnitPrice) 

├─HiddenLayers:Encoder →Bottleneck →Decoder 

├─Optimizer:Adam, Loss:MSELoss 

└─Device:UseCUDAifavailable 

##MainLoopOver EachTimeStep 

Foreachrecord(Quantity,UnitPrice,Time): 

├─Appendrawvaluesto`raw`, `raw1`,`times` 

├─SearchTreetofindwindow forcurrenttime: 

├─Iffound→Append[Quantity, Price]tothatwindow 

│ └─Ifnotfound→◻Delayorrebuildtree(fallbacklogic) 

├─ifthe windowhas≥20records: 

├─Converttotensor →ForwardpassthroughAutoencoder 

├─Compute ReconstructionLoss=MSE(input,output) 

├─ IfLoss >threshold: 

├─AnomalyDetected 

├─Aggregationcompute(ActiveFix) 

├─Label= 1(Anomaly) 

│ └─AppendFixedValueto`fixed` 

└─Else: 

├─NoAnomaly 

├─Appendoriginalvalueto`fixed` 

└─Label= 0 

└─RetrainAutoencoder(fewepochs) usingcurrentwindow 

##Post-ProcessingasReport Generationwithsmalland largecheckpoints ## 

keeping slide timing constant 

├─PlotvaryingwindowtimingsVstimecomplexityovertime ## 

keeping window timing constant 

├─Plotvarying slidetimingsVstimecomplexityover time 
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5. Performance Evaluation 

The effectiveness of the proposed Active Fix Lite algorithm is evaluated 

experimentally based on control points that act as a check point mechanism. In streaming 

applications dealing with stream aggregation, check points are snapshots of currentprocessing 

state taken at regular intervals.Check points play a crucial role allowing the systemto function 

ina fault tolerant, accurate, consistent and scalable manner. Thus, even in case of system 

failure, it can recover the process from the last good state. It also ensures results to be in an 

accurate and consistent manner. 

In this research work, control points are used to handle the late arrival data for 

improving the efficiency of the system. The computational time of the data stream process is 

evaluated 

Usingsmallestcontrolpointas 

cp= …………Eqn.1 and 

 

 

Usinglargestcontrolpointas 

cp=n / ............................... Eqn.2 

 

All stream aggregation techniques generally rely on the time based metric, the Time 

Complexity (TC) which is used to measure the time requirement of the computational 

resourceofa technique to process each new data (usually each new window ofelements). TC is 

used as a crucial metric to measure the efficiencyof a technique. A low TC is essential for the 

stream aggregation techniques in order to keep up with the continuous arrival of data. When 

the processing time for each data exceeds the arrival rate, itleads to processingbacklog 

resulting in increased latency and data loss. When the volume or velocity of data streams 

increase, TC causes a significant impact on the performance of the processingsystem. As the 

size of the inputin streaming application isn'tfixed, the time complexity of the aggregation 

technique is generally measured for each window of elements instead of the entire stream. 

Based On the size ofthe input, TC is often expressed using Big O notation describing 

the worst case running time of a technique. Generally it is defined as a function of input. 

In this work, TC is Measured as a function in terms of input data, usually eachnew 

window ofelements.TC is measured For varying window and slide timings based onthe two 

scenario i.e., for small and large control points. 

In case of small control points, TC is measured with the following function 

represented as Eqn.3 

 

𝐹(𝑠) = (⎸
𝑛

𝑘
⎸) + 3 ∗ 𝑃      ……….. Eqn.3 

 

Similarly incase of large control points, the TC is measured with the following 

function represented as Eqn.4 

𝐹(𝑙) = (𝑃 + 1) ∗ log  ( ⎸
𝑛

𝑘
⎸)............Eqn.4 

 

Where 
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 n is the number of partitions of a window element 

K is the number of control points and 

P denotes f1 and f2 partitions of the control points 

Fig.1shows the parameters n, k, pin detail in section3. 

 

6. Experimental Results and Discussions 

The research work utilizes Kaggle datasets which are open-source public data 

collections generally used for research, training, prediction and so on. These datasets are a 

kind of synthetic data sets that are of great use for data science practices with machine 

learning models. Data is extracted from On-line Retail store data from kaggle for this work. 

Outofnearly33,000 transactionaldata, 901 datatransactions are considered for experimental 

evaluation. 

6.1 ScalabilityperformancewithSmallControlpoints 

ThescalabilityperformanceofActiveFixLiteapproachisevaluatedagainstActive Fix 

working using small control points. Results are taken for the following cases: 

Case1:By increasingthewindowtimingintervalfora constantslide timing 

interval 

In case of smaller control points, for a constant slide time interval of 3000 seconds 

with varying window timing intervals 18000s, 20000s, 22000 and so on, the time complexity 
is measured and depicted using the following Table 1 and figure Fig. 3. 

 

Table1ScalabilityperformanceofActiveFixVs.ActiveFix 

Lite with small control points for Slide timing of 3000 s 

 

Window 

Timings 

(s) 

TimeComplexity (ins) 

ActiveFix ActiveFix 
Lite 

18000 6 6 

20000 6 6 

22000 7.5 7.01 

24000 11.09 7.82 

26000 11.09 7.82 

30000 14.07 9.15 

32000 14.07 9.15 

34000 17.84 10.24 

 

 

Case2: Byincreasing theslide timing intervalfora constantwindowtiminginterval. 

In case of smaller control points, keeping the window time interval of 34000 seconds 

constant for varying slide timing intervals 2000s, 3000s, 4000s and so on, the timecomplexity 

is measured and depicted using the Table 2 and figure Fig.4. 

20 

SmallControlPoints-SlideTime 

3000s 

15 

 
10 

 
5 

 
0 

0 5000 10000150002000025000300003500040000 

SmallControlPointsSlideTime3000sTimeComplexity(ins) 
ActiveFix 
SmallControlPointsSlideTime3000sTimeComplexity(ins) 
ActiveFixLite 

Fig.3ScalabilityperformanceofActiveFixVs.ActiveFix 

LitewithsmallcontrolpointsforSlidetimingof3000s 
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30 

 
20 

SmallControlPoints- 

WindowTime34000s 

10 

0 

2000 3000 4000 5000 

SmallControlPointsWindowTime34000sTime 
Complexity (in s) Active Fix 
SmallControlPointsWindowTime34000sTime 
Complexity(ins)ActiveFixLite 

Fig.4ScalabilityperformanceofActiveFixvs.ActiveFix
Litewithsmallcontrolpointsforwindowtiming of 
3000s with varying slide timings 

Table2ScalabilityperformanceofActive 

Fix vs. Active Fix Lite with small 

control points for slide timing of 3000 s 

 

Slide 

Timings 

( in s) 

 

TimeComplexity (ins) 

 
Active Fix 

 

ActiveFixLite 

2000 26.56 21.098 

3000 17.84 10.242 

4000 13.59 7.82 

5000 6 6 

 

 

 

From the observations of Table 1, Table 2 and Fig.3, Fig.4, it is clear that Active Fix Lite 

outperforms Active Fix in computational time for varying window timings when small 

control points are chosen. 

6.2 Scalability performance with Large Control points 

The scalability performance of Active FixLite approach is evaluated against Active 

Fix working using large control points. Results are taken for the following cases 

Case1: Byincreasingthewindowtimingintervalfora constantslidetiminginterval. 

In case of larger control points, keeping the slide time interval of 3000 seconds for 

varying window timing intervals 18000s, 20000s, 22000s and so on, the time complexity is 

measured and depicted using the Table 3 and figure Fig.5 
 

Table 3 scalability performance of Active Fix vs.Active Fix Lite with large 

controlpointsforSlidetimingof3000s 

 
 

 Window 

Timings 

(s) 

Time Complexity 
(ins) 

Active 

Fix 

Active 

FixLite 

8000 7.88 2.027 

20000 7.88 2.027 

22000 8.72 2.018 

24000 9.39 2.820 

26000 9.39 2.820 

30000 12.90 9.158 

32000 12.90 9.158 

34000 14.19 4.242 
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Fig.5ScalabilityperformanceofActiveFixvs.ActiveFixLite with large control points for Slide timing 

of 3000 s 

 

Case2: By increasing the slide timing interval for a constant window timing interval. 

In case of larger control points, keeping the window time interval of 34000 seconds 

constant for varying slide timing intervals 2000s, 3000s, 4000s and so on, the timecomplexity 

is measured and depicted using the Table 4 and figure Fig.6. 

Table4 scalability performance of Active Fix vs. Active Fix Lite with large control 

points for window timing of 34000s s 

 

Slide 

Timings 

( in s) 

TimeComplexity 

(in s) 

 ActiveFix Active 
FixLite 

2000 47.55 14.098 

3000 20.84 4.242 

4000 16.09 2.820 

5000 12 2.027 

LargeControlPointsSlidetime3000sTimeComplexity(ins) 
Active Fix 

LargeControlPointsSlidetime3000sTimeComplexity(ins) 
ActiveFixLite 

40000 30000 20000 10000 0 

0 

5 

10 

LargeControlPoints-Slidetime 

3000s 
15 

http://www.thebioscan.com/


                                                                        20(4): 1334-1347, 2025                 www.thebioscan.com 

 

 
1345  

 

 

 

Fig.6ScalabilityperformanceofActiveFixvs.ActiveFixLite with large control points for window 

timing of 34000s for varying slide timing 

 

From the observations of Table 3, Table 4 and Fig. 5, Fig. 6, it is clear that Active Fix Lite outperforms 

Active Fix in computational time for varying slide timings when large control points are chosen. 

7. Conclusion and Future Enhancement 

The incremental SWAG technique Active FixLite isdevelopedto handle non- 

FIFO streams using a sliding window aggregator approach and auto encoders for a resource 

efficient stream processing system. Time complexity is the fundamental metric used for 

measuring the performance of stream aggregation technique. In the context of stream 

processing, it helps to choose the techniques that are fast and more energy efficient. The 

performance of Active Fix Lite technique is experimentally tested using small and largecheck 

points for varying window and slide timings in order to measure the time complexity. The 

proposed Active Fix Lite technique outperforms Active Fix technique by reducing the 

computational load and is suitable for applications with adaptive window environments. 

The future enhancement for this research work can be concentrated to measure the 

amount of out of orderness and train the model efficiently using machine learning techniques. 
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