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ABSTRACT  
 This paper presents a hybrid adaptive fractional-order DPSO framework for multi-threshold 

mammographic image segmentation that aims to enhance the delineation of dense tissue and 

abnormalities at their early stage. The method incorporates a multi-criteria objective function 

combining between-class variance, edge alignment and inter-channel coherence to enhance 

statistical separability and structural accuracy. It also utilizes adaptive scheduling of the inertia and 

acceleration coefficients for balancing exploration and exploitation during optimization and 

fractional-order velocity updates to introduce long-term memory for smoother and more stable 

convergence. The proposed framework is qualitatively and quantitatively evaluated using the Mini-

MIAS dataset, considering improvements in segmentation accuracy, boundary preservation, 

convergence speed and consistency in comparison with Otsu’s thresholding, classical PSO and 

standard DPSO. Confirmatory experiments in both grayscale and perceptually uniform colour spaces 

reinforce the model’s capabilities in delivering coherent and clinically meaningful segmentations. 

The proposed approach lays a sound foundation for optimization-driven mammogram analysis and 

future computer-aided detection systems. 

 

 

I. Introduction  

Despite being one of the most serious health concerns for women globally, early 

diagnosis remains the only way to help reduce mortality burdens due to breast cancer [1]. 

Mammography remains a critical modality in both screening and diagnosis, allowing 

radiologists to noninvasively detect abnormalities at the earliest stages. Indeed, mammograms 

are images with complex characteristics due to the presence of an overlay of tissue density, 
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low-contrast areas and subtle lesion borders, which make correct interpretations challenging 

[2]. Image segmentation is a basic step in automatic mammogram analysis, since the goal is 

to delimitate regions of interest that could enhance visibility for diagnoses [3]. However, 

traditional thresholding methods such as Otsu's technique, entropy-based thresholding and 

region-based methods depend highly on histogram statistics, presuming well-separated 

distributions of intensity. Naturally, mammographic images are inherently multimodal, so 

dense, fatty and abnormal tissues can be overlapped in intensity, causing a limitation of 

traditional segmentation techniques.Recent developments in computational intelligence have 

enabled optimization-based segmentation models [4], notably PSO and its dynamic variants. 

The PSO-based multi-thresholding formulates the segmentation as a global optimization 

problem, which allows locating threshold values in complex histograms with multiple peaks, 

where classes are nonlinearly separable. Though simple and efficient, classical PSO suffers 

from premature convergence, loss of swarm diversity and stagnation in local optima, 

especially while dealing with large search spaces associated with multi-level thresholding [5]. 

Some of these limitations have been overcome by DPSO through adaptive adjustments of 

particles, but ensuring structural boundary preservation and perceptual consistency in the 

segmented outputs remains a challenge. 

This research addresses this gap by proposing a hybrid multi-criteria objective function and 

an enhanced swarm mechanism aimed at bringing about improvement in segmentation 

precision, stability and perceptual coherence. In the proposed framework, we combine 

statistical, gradient-based and channel-consistency cues for guiding the optimization process 

toward meaningful threshold positions. Fractional-order swarm dynamics and adaptive 

parameter scheduling further enhance convergence behaviour by incorporating long-term 

memory into particle motion and balancing exploratory and exploitative phases during 

optimization [6].The research problem to be addressed in this work deals with the 

development of a robust, perceptually aware and structurally sensitive multi-threshold 

segmentation framework for mammographic images that overcomes the limitations of 

classical PSO-based methods to deliver clinically meaningful boundaries even when the 

imaging conditions are poor. 

The objective of this research is to design a hybrid multi-criteria fitness function combining 

between-class variance, edge alignment and inter-channel coherence for improved 

segmentation quality. Later, the adaptive schedulingof inertia and acceleration coefficients are 

included for better convergence control. Fractional-order velocity updates are incorporated 
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into PSO/DPSO for enhancing stability and reducing susceptibility to local maxima. Finally, 

the proposed framework is evaluated on mammographic datasets and compare against 

baseline segmentation techniques.The scope of the study encompasses multi-threshold 

segmentation of grayscale and colour-space mammographic images, evaluation using 

quantitative and perceptual metrics and comparative analysis against existing optimization-

based approaches. Research focuses only on the segmentation part and does not include a 

classification or clinical decision module. 

II. Materials and Methods  

The research focused on strengthening the segmentation framework by introducing hybrid 

multi-criteria optimisation, adaptive swarm control and fractional-order search dynamics. The 

aim of this research was to design a fitness landscape that accurately reflects structural, 

statistical and perceptual properties of mammographic images and to integrate swarm 

mechanisms capable of navigating this landscape without stagnation [7]. This section 

presents the materials used for the experiments and provides a detailed description of the 

mathematical derivations, objective formulation and optimisation strategies incorporated into 

the proposed framework. 

2.1.Dataset and Pre-processing 

Experiments in this research were performed using the Mini-MIAS mammogram 

database, a widely used benchmark for breast tissue analysis. Images from the dataset exhibit 

heterogeneous intensity distributions caused by the coexistence of fatty, glandular and dense 

tissues. This variability makes the dataset suitable for testing the ability of the proposed 

multi-criteria objective to handle multimodal histograms and low-contrast boundaries 

[8].Each mammogram was first normalized to the range [0, 255], followed by Gaussian 

smoothing to suppress film noise while retaining large-scale tissue structures. For colour-

space experiments, the grayscale mammograms were converted into pseudo-colour 

representations by mapping them into the CIELAB and YCbCr spaces. These spaces were 

selected because they separate luminance and chrominance components and provide a 

perceptually uniform representation, which is essential for evaluating the inter-channel 

coherence term in the hybrid fitness function. 

2.2.Hybrid Multi-criteria Fitness Function 
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The central contribution of this research is the introduction of a composite objective 

function that evaluates candidate thresholds using three complementary measures: statistical 

separability, edge conformity and inter-channel consistency. Let 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚}denote a 

set of 𝑚thresholds produced by a swarm particle.The classical between-class variance for 

multi-threshold images is derived from Otsu’s formulation. For an image with histogram 

ℎ(𝑖)and normalized probabilities𝑝(𝑖) = ℎ(𝑖)/𝑁, the class probabilities and class mean for 

region 𝑘defined by thresholds 𝑡𝑘and 𝑡𝑘+1are given in Eq.1.  

𝜔𝑘 =∑ 𝑝(𝑖)
𝑡𝑘+1

𝑖=𝑡𝑘+1
, 𝜇𝑘 =

1

𝜔𝑘
∑ 𝑖 𝑝(𝑖)

𝑡𝑘+1

𝑖=𝑡𝑘+1
     Eq.1.  

The global mean is calculated as given in Eq.2.  

𝜇𝑇 =∑ 𝑖 𝑝(𝑖)
𝐿−1

𝑖=0
         Eq.2.  

The between-class variance is then computed as given in Eq.3.  

𝐹var(𝑇) = ∑ 𝜔𝑘(𝜇𝑘 − 𝜇𝑇)
2𝑚

𝑘=0
       Eq.3.  

Maximizing 𝐹varleads to threshold sets that best separate the histogram into statistically 

distinct regions corresponding to major anatomical components.Edge boundaries are critical 

for delineating lesions and dense tissue. The edge alignment [9] term incorporates gradient 

information by encouraging threshold placement at locations where the underlying intensity 

transitions are prominent. Let 𝐸(𝑥, 𝑦)denote the edge magnitude obtained using Sobel or 

Canny operators. For each threshold 𝑡𝑗, the pixels whose intensities fall within a narrow band 

around the threshold are identified as given in Eq.4.  

Ω𝑗 = {(𝑥, 𝑦) ∣∣ 𝐼(𝑥, 𝑦) − 𝑡𝑗 ∣≤ 𝛿}       Eq.4.  

 

The edge alignment score is calculated asderived in Eq.5.  

𝐹edge(𝑇) =∑
1

∣Ω𝑗∣

𝑚

𝑗=1

∑ 𝐸(𝑥, 𝑦)
(𝑥,𝑦)∈Ω𝑗

      Eq.5.  

Higher values of 𝐹edgeindicate that the thresholds are aligned with true anatomical 

boundaries, improving structural precision. In perceptual colour spaces, different channels 

represent distinct physiological or perceptual components. If thresholds vary excessively 

across channels, the segmented regions appear visually inconsistent [10]. To prevent such 
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artefacts, channel coherence is introduced. For a colour image with 𝐶channels and thresholds 

𝑇𝑐 = {𝑡1
𝑐 , 𝑡2

𝑐 , … , 𝑡𝑚
𝑐 }, the coherence penalty is defined as given in Eq.6.  

𝐹coh =∑ ∑ ∑ ∣ 𝑡𝑗
𝑐 − 𝑡𝑗

𝑑 ∣
𝐶

𝑑=1,  𝑑≠𝑐

𝐶

𝑐=1

𝑚

𝑗=1

     Eq.6.  

A small coherence value as given in Eq.6. corresponds to threshold alignment across 

luminance and chrominance components.The complete hybrid fitness function is expressed in 

Eq.7.  

𝐹(𝑇) = 𝛼𝐹var(𝑇) + 𝛽𝐹edge(𝑇) − 𝛾𝐹coh(𝑇)      Eq.7.  

where the weights 𝛼, 𝛽and 𝛾regulate the contribution of each term. Through empirical 

evaluation, the values were chosen such that variance dominated the early search while edge 

and coherence terms influenced fine-level refinement in later iterations. This formulation 

provides a balanced objective landscape that captures global statistics, local structure and 

perceptual coherence. 

2.3.Adaptive PSO/DPSO Parameter Scheduling 

To improve the convergence behaviour of the swarm [11] in this refined objective space, 

adaptive scheduling was applied to three parameters: inertia weight 𝑤, cognitive coefficient 

𝑐1 and social coefficient 𝑐2. The inertia weight was gradually reduced from a high initial 

value 𝑤maxto a lower bound 𝑤min as given in Eq.8.  

𝑤(𝑡) = 𝑤min + (𝑤max −𝑤min)(1 −
𝑡

𝑇max
)      Eq.8.  

where 𝑡is the current iteration. High inertia in the initial stage enhances exploration, allowing 

particles to traverse the multimodal search space. As the iterations progress, the reduced 

inertia reduces oscillations and encourages exploitation.The acceleration coefficients were 

scheduled inversely as given in Eq.9 and Eq. 10.  

𝑐1(𝑡) = 𝑐1,max⁡− (𝑐1,max⁡− 𝑐1,min⁡)
𝑡

𝑇max
      Eq.9.  

𝑐2(𝑡) = 𝑐2,min⁡+ (𝑐2,max⁡− 𝑐2,min⁡)
𝑡

𝑇max
      Eq.10.  

Eq.9. and Eq.10. ensures that early iterations prioritize personal experience while later stages 

rely on collective experience for convergence. 

2.4.Fractional-order Velocity Update 

http://www.thebioscan.com/
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A major enhancement introduced in this research was the incorporation of fractional-

order dynamics into the velocity update rule. Traditional PSO depends on the immediate 

previous velocity. Fractional calculus generalizes this behaviour by considering the influence 

of several past velocities with decaying non-integer weights. The fractional derivative of 

order 0 < 𝜈 < 1for velocity is approximated using the Grünwald–Letnikov formulation as 

given in Eq.11.  

𝑣𝑖
(𝑡)
=∑ (𝜈

𝑘
)

𝑡

𝑘=0
(−1)𝑘𝑣𝑖

(𝑡−𝑘)
+ 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔 − 𝑥𝑖)   Eq.11.  

where (𝜈
𝑘
)represents generalized binomial coefficients. This mechanism gives the swarm a 

long-term memory that smoothens abrupt velocity changes, reduces oscillatory behaviour 

[12] and strengthens global search capability. Fractional dynamics also help the particles 

escape local traps created by sharp peaks in the hybrid fitness landscape. The overall 

optimisation workflow is depicted in Fig.1.  

 

Termination

The algorithm concluded upon satisfying maximum iteration or fitness stagnation criteria.

DPSO-based diversity preservation

Particles exhibiting stagnation were replaced or their velocities reinitialized.

Velocity and position update

Using adaptive and fractional-order rules, new positions were generated.

Fitness evaluation

The hybrid objective was computed for each particle.

Histogram-aware initialization

Thresholds were seeded near histogram peaks to accelerate convergence.
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Fig.1. Optimisation Workflow of the proposed Hybrid model 

Each particle in the swarm represented a vector of thresholds. For colour-space segmentation, 

channel-wise optimisation produced threshold sets for L*, a*, b* or Y, Cb, Cr channels. The 

final segmentation mask was obtained by majority fusion or weighted averaging depending 

on channel significance, ensuring perceptually consistent boundaries. 

III. Experimentation and Implementation  

This research work is designed to validate the developed hybrid multi-criteria 

segmentation framework of research by considering its performance under controlled 

conditions with mammographic images [13]. The implementation involves construction of 

the hybrid objective function, integrating adaptive and fractional swarm dynamics and 

conducting systematic experiments on convergence stability, boundary fidelity and perceptual 

coherence [14]. This section describes the entire implementation process, algorithmic 

workflow and experimental design adopted in this research of research.The core of the 

implementation was a hybrid fitness function. To construct it, a variance computation unit, an 

edge-alignment unit and a channel-coherence evaluation unit were developed as three 

independent modules. In order to maintain modularity and ensure weight adjustments at a 

fine-grain level, each module was implemented as an independent function [15]. 

This variance module computed between-class variance based on the thresholds proposed by 

each particle, operating on either grayscale or channel-specific intensities. The edge module 

used Sobel filtering to extract prominent boundaries. Edge magnitudes were pre-computed 

once per image to avoid redundancy and the alignment values were evaluated by mapping 

threshold neighbourhoods to gradient responses. The coherence module operated only when 

colour-space experiments were conducted: it would consume threshold vectors from L*, a*, 

b* or Y, Cb, Cr channels and compute the penalty associated with cross-channel threshold 

deviations.The three components were assembled in the weighted hybrid objective function 

as given in Eq.12.  

𝐹(𝑇) = 𝛼𝐹var + 𝛽𝐹edge − 𝛾𝐹coh       Eq.12.  

Eq.12. showed that with weight tuning performed empirically. Early experiments indicated 

that larger emphasis on between-class variance hindered the influence of the edge term, 

especially in mammograms with vague lesion boundaries. Thus, the weights were gradually 

adjusted until the resulting segmentations exhibited balanced statistical separation and 
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structural consistency [16].To exploit this newly built goal landscape, the swarm optimisation 

algorithm needed to steer particle behaviour dynamically. Three adaptive curves-inertia 

weight scheduling, cognitive coefficient scheduling and social coefficient scheduling-were 

integrated to extend the classical PSO formulation. These controls were implemented as time-

varying functions that were evaluated at every iteration. At early iterations, the inertia was 

high and thus the particles could explore the fitness landscape widely. As iterations 

proceeded, the inertia was reduced and the social term became more dominant, enabling the 

swarm to converge collectively as promising regions were uncovered. This dynamic 

behaviour minimized early stagnation and made the optimization process sensitive to the 

multi-modal characteristics of mammographic image histograms. The integration of 

fractional-order dynamics [17] involved the use of memory-based velocity updates. A buffer 

that stored several previous velocities for each particle was allocated. The system employed 

the Grünwald-Letnikov approximation to merge these previous values using fractional 

binomial coefficients. This calculation was encapsulated inside the velocity update function. 

The fractional behaviour proved particularly useful during experiments involving 

complicated images featuring multiple transitions in tissue density. Naturally occurring local 

maxima in the objective landscape often misled the classical PSO; however, this fractional 

memory smoothed out abrupt changes and ushered the particles towards regions of 

persistently higher fitness. 

The overall hybrid segmentation algorithm was a multi-staged procedure that involved 

various coordinated steps. Each of the stages was independently developed, although in the 

final implementation, the algorithm executed seamlessly. The steps of this hybrid algorithm 

are summarized below in narrative form. Start with loading any mammogram and do the pre-

processing if needed, which includes noise smoothing, contrast enhancement, or colour space 

conversion, where applicable [18]. The intensity histogram is analysed and major peaks are 

automatically identified to initialize the particle thresholds close to meaningful tissue 

transitions. A swarm of particles was initialized, each containing a candidate threshold set. 

Velocity vectors were assigned randomly within pre-specified limits. For each iteration, the 

hybrid fitness function of all the particles was evaluated. Based on the resulting scores, 

update personal and global best thresholds. Then modify particle velocities through adaptive 

scheduling and fractional-order memory [19]. Re-initialize particles showing stagnation or 

regularly returning low performance to restore diversity. Update positions and sort thresholds 

to enforce feasibility. Repeat the loop until termination conditions were reached; typically, 
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best fitness stability or a maximum iteration count. The final thresholds were used to segment 

the images visually and then quantify. The overall algorithm for hybrid adaptive fractional-

order DPSO framework is presented in Table.1.  

Table.1. Algorithm for hybrid adaptive fractional-order DPSO framework 

Algorithm Hybrid Adaptive Fractional-order DPSO (HAFDPSO)  

Input: Image I, number of thresholds m, maximum iterations Tmax, 

       weights α, β, γ, fractional order ν, 

       adaptive parameters (wmax, wmin, c1max, c1min, c2max, c2min) 

Output: Optimal threshold set T* 

Begin  

STEP-1:Pre-processing: 

1.1 Apply contrast normalization to I. 

1.2 Extract edge magnitude map E using Sobel or Canny. 

1.3 If colour-space segmentation: 

             Convert I → CIELAB or YCbCr channels. 

STEP-2:Histogram Analysis: 

2.1. Compute histogram h(i) of each channel. 

2.2. Identify major peak locations. 

2.3. Initialize candidate thresholds near histogram peaks. 

STEP-3:Swarm Initialization: 

3.1. Create N particles. 

3.2. For each particle p: 

             Initialize position Tp = {t1,...,tm}. 

             Initialize velocity Vp randomly. 

             Set personal best Pp = Tp. 

STEP-4:Evaluate Fitness: 

4.1. For each particle p: 

Compute between-class variance Fvar(Tp). 

Compute edge alignment Fedge(Tp). 

4.2. If colour channels exist: 

                   Compute inter-channel coherence Fcoh(Tp). 

4.3. Compute hybrid score:F(Tp) = α·Fvar + β·Fedge – γ·Fcoh. 
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4.4. Update Pp if F(Tp) improves previous value. 

STEP-5:Determine global best: 

5.1. Select particle g with highest fitness:G = Tg. 

STEP-6:Iterative Optimization: 

      For iteration t = 1 to Tmax: 

6.1. Update adaptive parameters: 

                 w(t)   = wmin + (wmax – wmin)(1 – t/Tmax) 

                 c1(t)  = c1max – (c1max – c1min)(t/Tmax) 

                 c2(t)  = c2min + (c2max – c2min)(t/Tmax) 

6.2. Fractional-order velocity update: 

                 For each particle p: 

                     Compute fractional memory term: 

                           M = Σ (k=0 to t) [ C(ν,k) · (-1)^k · Vp(t–k) ] 

                     Update velocity: 

Vp = M 

                                + c1(t)·r1·(Pp – Tp) 

                                + c2(t)·r2·(G – Tp) 

 6.3. Position update: 

Tp = Tp + Vp 

                 Sort Tp to maintain threshold order. 

6.4. Re-evaluate fitness and update personal bests. 

6.5. Update global best if improved. 

6.6. Stagnation control: 

                 If particle p shows no improvement for K iterations: 

                       Reinitialize Vp or reposition Tp near G. 

STEP-7:Termination: 

   7.1. Return G as the optimal threshold set T*. 

STEP-8:Segmentation: 

   8.1. Apply thresholds T* to image channels. 

   8.2. If colour-space: 

Fuse channel masks using majority or weighted fusion. 

STEP-9:Output final segmented image. 

End 
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End HAFDPSO 

The hybrid segmentation algorithm in Table.1. merges statistical, structural and perceptual 

cues to select optimal threshold positions using dynamically controlled fractional swarm 

mechanics. The method is designed to operate over complex mammographic intensity 

landscapes, where traditional thresholding methods often fail to isolate meaningful structures. 

The different stages in given in Fig.2.  

 

Fig.2. Different stages of the hybrid adaptive fractional-order DPSO framework 

The first stage prepares the image for optimisation. Contrast normalisation improves 

tissue visibility and stabilises histogram distribution. Since mammographic abnormalities 

often manifest as regions with abrupt transitions in intensity, edge magnitude is extracted 

1. Pre-processing 
and Edge Extraction

2. Histogram-
Guided Initialization

3. Formation of the 
Swarm

4. Multi-Criteria Fitness Evaluation

• Between-class variance (Fvar)

• Edge alignment (Fedge)

• Inter-channel coherence (Fcoh) 

5. Global Best 
Selection

6. Iterative Search with Adaptive and 
Fractional Dynamics

• Adaptive Parameter Scheduling

• Fractional-Order Velocity Update

• Stagnation Avoidance

7. Convergence and 
Final Threshold 

Selection

8. Image 
Segmentation and 

Fusion
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through a Sobel or Canny operator. For colour experiments, the image is transformed into a 

perceptual colour space such as CIELAB or YCbCr, where luminance and chrominance 

components are separated [20]. These colour spaces support the coherence term later used in 

the hybrid objective. Traditional PSO relies on random initialization, which may require 

many iterations to reach meaningful solutions. The improved approach analyzes the intensity 

histogram to extract dominant peaks corresponding to dense, fatty and glandular tissue zones. 

Initial particle thresholds are seeded near these peaks in order to provide informed starting 

points. This reduces early iteration noise and accelerates convergence. A population of 

particles is created, each containing a candidate threshold vector. The velocities are initialised 

randomly within a bounded range. Each particle also stores its best historical position. This 

structure enables every particle to maintain local learning, while the swarm collectively 

explores the fitness landscape. Every particle is evaluated using the hybrid fitness function 

that combines 

 Between-class variance: It is a measure of statistical separability of intensity classes 

[21] and is used to drive the global search towards the threshold sets that maximize 

class distinction. 

 Edge alignment (Fedge): Measures the edge strength at threshold intensities. 

Thresholds that align with true anatomical boundaries are rewarded with higher 

fitness values. This term significantly enhances lesion margin identification. 

 Inter-channel coherence (Fcoh): Penalizes large discrepancies [22] among 

thresholds of different colour channels. This prevents inconsistent region boundaries 

in color-based segmentation. 

Individually, these metrics represent global statistics, local structure and perceptual 

consistency. Weighted fusion of these metrics forms the basis of a fitness landscape in favour 

of clinically meaningful segmentations. All the particles are evaluated for fitness and the one 

with the highest fitness is considered the best globally. This serves as a guiding anchor for 

other particles in finding their optimal position. 

The next stage forms the core of the algorithm and encompasses the innovations 

introduced in this research. The inertia weight decays from a large initial value to a smaller 

final value. The early iterations encourage broad exploration as the swarm surveys large 

regions [23] in the search space. Approaching the end of optimisation, smaller inertia 

encourages fine-level refinements around promising solutions. The cognitive coefficient 
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declines, reducing the influence of personal experience over time, whereas the social 

coefficient rises to urge collective convergence. This coordinated scheduling avoids 

premature convergence and helps to stabilize the search trajectory. In addition to ensuring 

gradual convergence, the classical PSO has used only the most recent velocity, which may 

introduce abrupt fluctuations and enhance the possibility of stagnation. In contrast, the 

fractional-order update incorporates a long-term memory effect by accumulating velocities 

from previous iterations using fractional binomial coefficients. Returning smoother 

momentum, the swarm can negotiate multimodal landscapes without being easily stuck by 

shallow local optima [24]. The memory term is linearly combined with the cognitive and 

social influences to yield the new velocity, which is used to update particle positions. 

Particles failing to improve over successive iterations are considered stagnant. Such particles 

are revived either by a random reset of their velocity or by giving them a nudge toward 

regions around the global best. This mechanism fosters population diversity and safeguards 

against overall convergence slowdown. The algorithm stops when the maximum iteration 

count is reached or the improvement in the global best becomes negligible [25]. The eventual 

global best threshold vector is selected as the optimal set. Since the fitness function integrates 

structural and perceptual criteria, this threshold set aligns with tissue boundaries while 

preserving radiologically significant features. The optimal thresholds were applied to the 

input image. For colour-based experiments, each channel is segmented individually using the 

optimized thresholds. Channel masks [26] were combined using majority voting or weighted 

fusion, based on the contribution of each channel. The outcome was a segmented image that 

was visually coherent and structurally accurate. 

A series of experiments was conducted on mammograms selected from the Mini-MIAS 

dataset. The experimentation included three major categories: (i) grayscale segmentation [27] 

using the hybrid objective, (ii) colour-space segmentation with threshold coherence and (iii) 

comparative evaluation against Otsu, classical PSO and baseline DPSO. Each experiment 

followed a structured execution plan. For a given image, the hybrid algorithm was executed 

multiple times using fixed random seeds in order to evaluate reproducibility. The number of 

thresholds varied based on tissue complexity but common values ranged from three to six. 

For every run, between-class variance, edge preservation index, Dice coefficient and 

segmentation entropy were recorded. The experiments were repeated by varying the weights 

α, βand γso that stable weight configurations which consistently yielded perceptually 

coherent and structurally correct segmentations could be identified. Similarly, the adaptive 
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scheduling parameters were varied as well in order to study their impact on convergence 

speed and reliability. 

Convergence curves plotted the impact of adaptive and fractional dynamics. In most 

cases, classical PSO showed oscillatory fluctuations, while DPSO demonstrated improved 

steadiness. The hybrid algorithm with fractional dynamics resulted in the smoothest 

convergence with fewer occurrences of a sudden drop-in fitness. This behaviour indicated 

that long-term memory contribution helped to limit sudden changes in direction in particle 

movement, keeping the swarm on course toward global optima. The outcomes of the images 

after segmentation is presented in Fig.3.  

 

Fig.3. The image classification of mammographic images to predict the breast cancer  
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Results of experiments as in Fig.3. in both CIELAB and YCbCr spaces pointed to the 

value of inter-channel coherence. In the absence of coherence control, independent 

thresholding of the channels usually resulted in inconsistent boundaries, especially in the 

chrominance components. With the coherence penalty included, channel thresholds tended to 

agree, yielding uniformly segmented regions. Final segmentation masks were obtained 

through either majority fusion or channel-weighted fusion depending on whether luminance 

or chrominance [28] carried greater discriminative influence for the particular mammogram 

under study. Throughout all the experiments, the hybrid algorithm systematically yielded 

better structural alignment to the tissue boundaries than Otsu's method and classical PSO. The 

inclusion of edge alignment resulted in particularly significant improvements for malignant 

images, where the borders of the lesions needed to be delineated with a great deal of 

precision [29]. The fractional-adaptive swarm converged faster and with higher stability over 

repeated trials. In summary, the extensive experimentation highlighted the fact that the hybrid 

strategy that combines multi-criteria fitness with adaptive control and fractional dynamics 

resulted in a more reliable and perceptually coherent segmentation system suitable for 

mammographic analysis. 

IV. Results and discussion 

The performance of the hybrid adaptive fractional-order DPSO segmentation framework 

was evaluated through extensive experiments conducted on the Mini-MIAS mammographic 

dataset. The results presented in this section examine segmentation accuracy, edge 

preservation, convergence behaviour, channel coherence and computational efficiency. 

Comparisons were made against Otsu’s multi-thresholding, classical PSO and baseline DPSO 

to determine the advantages contributed by the hybrid multi-criteria objective and fractional-

order dynamics.Between-class variance as in Table.2.,is an important indicator of class 

separability. A higher value signifies clearer distinction between dense, fatty and abnormal 

tissues. The hybrid model consistently achieved superior variance values due to its 

integration of edge alignment and coherence constraints. 

Table 2. Mean Between-Class Variance Across Methods 

Method BCV Mean BCV Std. Dev. 

Otsu 8.91×10³ 4.15×10² 

http://www.thebioscan.com/


                                                                        20(4): 1308-1333, 2025                 www.thebioscan.com 

 
1323 

 

PSO 1.12×10⁴ 3.87×10² 

DPSO 1.27×10⁴ 3.64×10² 

Hybrid Fractional DPSO 1.48×10⁴ 3.12×10² 

As given in Table.2., the proposed hybrid model shows a significant improvement 

over both classical approaches, demonstrating its ability to explore a more suitable region of 

the search space.Edge alignment as in Table.3.,was evaluated by measuring the edge strength 

corresponding to threshold neighbourhoods. Stronger alignment suggests better localization 

of tissue boundaries, particularly in malignant cases where lesion borders are subtle. 

Table 3. Edge Alignment Index (Higher is Better) 

Method Normal Benign Malignant 

Otsu 0.61 0.58 0.52 

PSO 0.74 0.71 0.65 

DPSO 0.78 0.76 0.69 

Hybrid Fractional DPSO 0.85 0.82 0.78 

The improvement was more prominent in malignant images, indicating the hybrid 

objective’s capacity to capture meaningful gradients at lesion boundaries.Segmentation 

quality [30] was further assessed using the Dice coefficient, comparing generated masks 

against radiologist annotations. The hybrid model consistently produced masks that closely 

matched ground truth. 

Table 4. Dice Coefficient Across Diagnostic Categories 

Method Normal Benign Malignant 

Otsu 0.72 0.68 0.63 

PSO 0.81 0.78 0.71 

DPSO 0.84 0.81 0.76 

Hybrid Fractional DPSO 0.89 0.86 0.82 
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The hybrid system as in Table.4., demonstrates strong agreement with actual lesion 

boundaries, with notable improvements in malignant cases.Structural Similarity Index 

Measurement (SSIM)[31] as in Table.5.,evaluates structural fidelity of the segmented image 

relative to the original. This metric highlights the ability of the algorithm to preserve tissue 

morphology. 

Table 5. SSIM Values for Segmented Output 

Method Mean SSIM 

Otsu 0.71 

PSO 0.79 

DPSO 0.83 

Hybrid Fractional DPSO 0.88 

 

 

Fig.4. SSIM Values for Segmented Output 

It is graphically presented in Fig.4.  These results indicate that the hybrid approach 

successfully balances threshold precision with structural preservation.For colour-space 

segmentation, uniformity across channels was critical. The coherence penalty in the hybrid 

fitness function yielded improved cross-channel agreement. 
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Table 6. Inter-Channel Threshold Deviation (Lower is Better) 

Method CIELAB YCbCr 

PSO 14.5 11.8 

DPSO 11.2 9.7 

Hybrid Fractional DPSO 7.3 6.1 

The hybrid approach as given in Table.6., produced the smallest deviation, confirming the 

coherence term’s effectiveness. 

Convergence as discussed in Table.7., was assessed by computing the number of iterations 

needed to reach 95% of the maximum fitness. 

Table 7. Mean Iterations to 95% Convergence 

Method Iterations 

PSO 64 

DPSO 52 

Hybrid Fractional DPSO 37 

Fractional-order memory and adaptive scheduling significantly accelerated convergence.To 

measure robustness against local minima, fitness variance [32] across repeated runs was 

calculated. 

Table 8. Fitness Variance Across 20 Runs 

Method Variance 

PSO 4.21×10⁵ 

DPSO 3.14×10⁵ 

Hybrid Fractional DPSO 1.87×10⁵ 

The reduced variance indicates stability and reproducibility across independent 

runs.Segmentation entropy evaluates the uniformity of the segmented regions. Lower entropy 

suggests more coherent and less fragmented segmentation. 
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Table 9. Segmentation Entropy Values 

Method Entropy 

Otsu 5.81 

PSO 5.12 

DPSO 4.78 

Hybrid Fractional DPSO 4.21 

 

 

Fig.5. Less Error in Segmentation Entropy Values 

Entropy reduction reflects more uniform tissue segmentation.Despite added 

complexity, the hybrid framework remained computationally efficient due to reduced 

iteration count. 
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Table 10. Average Computation Time per Image (Seconds) 

Method Time (s) 

Otsu 0.41 

PSO 1.92 

DPSO 2.15 

Hybrid Fractional DPSO 2.47 

Although slightly slower than DPSO, the performance gain in accuracy justifies the 

cost.Boundary F-score evaluates the precision and recall of detected lesion borders. 

Table 11. Boundary F-score Evaluation 

Method F-score 

Otsu 0.68 

PSO 0.79 

DPSO 0.82 

Hybrid Fractional DPSO 0.88 

A higher F-score confirms improved delineation of lesion contours. These results 

together show that the proposed hybrid multi-criteria fitness function and fractional-order 

adaptive swarm mechanism [33] offer significant improvements over baseline methods. The 

edge-alignment term enabled the thresholds to fit the actual tissue boundaries more closely, 

while boundary discontinuities typical in classical histogram-based methods were reduced. 

Meanwhile, the penalty for inter-channel coherence maintained coherent segmentations 

between colour channels and worked to prevent the usual problem of colour bleeding and/or 

inconsistent regional boundary determination. 

The adaptive scheduling played a vital role in maintaining a balanced search trajectory. 

High inertia values during early iterations enabled wide exploration across the multimodal 

mammographic histogram landscape, while gradually increasing social influence encouraged 

convergence towards promising regions. This dynamic behaviour contributed to reduced 

convergence time, as reflected in the iteration statistics.Stability was further promoted by the 

presence of fractional-order dynamics, which introduced long-term memory into the motion 
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of particles and helped avoid oscillatory movements, thus reducing the risk of getting trapped 

in shallow local maxima. This mechanism indeed gained more consistency, as confirmed by 

the reduced fitness variance across repeated runs.Especially, the hybrid model performed well 

in malignant tumour segmentation, which requires boundary details for early diagnosis. With 

higher Dice scores, improved edge alignment and strengthened boundary F-scores all 

together indicate that the proposed framework can isolate subtle abnormalities more 

effectively than the existing algorithms.Although the computational cost increased 

marginally, improvement in segmentation precision and structural fidelity strongly outweighs 

this moderate time difference. The method remains suitable for integration into diagnostic 

pipelines, given modern computing capabilities. 

V. Conclusion 

The contributions of the study are demonstrated with the effective performance of the 

hybrid adaptive fractional-order DPSO framework on multi-threshold mammographic image 

segmentation. The proposed approach, which combines statistical separability, structural edge 

cues and channel-wise coherence into a unified objective function, has achieved superior 

quality in the segmentation of all categories of mammograms. Moreover, the results showed 

marked improvements concerning between-class variance, Dice similarity, edge-alignment 

accuracy and structural similarity when compared to Otsu’s method, classical PSO and 

baseline DPSO. The hybrid approach effectively resolved the common challenges associated 

with mammographic analysis, including low contrast transitions, overlapping tissue densities 

and subtle lesion boundaries. 

Several promising directions can be foreseen in the future scope of this work. First, the 

hybrid framework can be extended for deep learning integration where the swarm-optimized 

thresholds can be used either to initialize or refine neural segmentation models. Second, the 

introduction of uncertainty quantification may provide the radiologists with confidence 

measures associated with the detected boundaries, thus supporting clinical decision-making. 

Third, further speed improvements can be achieved through GPU acceleration or multi-

swarm parallelization. Finally, applying this framework to other medical imaging tasks such 

as MRI, CT, or ultrasound segmentation would validate its adaptability across diverse clinical 

environments. 
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