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l. Introduction

Despite being one of the most serious health concerns for women globally, early
diagnosis remains the only way to help reduce mortality burdens due to breast cancer [1].
Mammography remains a critical modality in both screening and diagnosis, allowing
radiologists to noninvasively detect abnormalities at the earliest stages. Indeed, mammograms

are images with complex characteristics due to the presence of an overlay of tissue density,
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low-contrast areas and subtle lesion borders, which make correct interpretations challenging
[2]. Image segmentation is a basic step in automatic mammogram analysis, since the goal is
to delimitate regions of interest that could enhance visibility for diagnoses [3]. However,
traditional thresholding methods such as Otsu's technique, entropy-based thresholding and
region-based methods depend highly on histogram statistics, presuming well-separated
distributions of intensity. Naturally, mammographic images are inherently multimodal, so
dense, fatty and abnormal tissues can be overlapped in intensity, causing a limitation of
traditional segmentation techniques.Recent developments in computational intelligence have
enabled optimization-based segmentation models [4], notably PSO and its dynamic variants.
The PSO-based multi-thresholding formulates the segmentation as a global optimization
problem, which allows locating threshold values in complex histograms with multiple peaks,
where classes are nonlinearly separable. Though simple and efficient, classical PSO suffers
from premature convergence, loss of swarm diversity and stagnation in local optima,
especially while dealing with large search spaces associated with multi-level thresholding [5].
Some of these limitations have been overcome by DPSO through adaptive adjustments of
particles, but ensuring structural boundary preservation and perceptual consistency in the

segmented outputs remains a challenge.

This research addresses this gap by proposing a hybrid multi-criteria objective function and
an enhanced swarm mechanism aimed at bringing about improvement in segmentation
precision, stability and perceptual coherence. In the proposed framework, we combine
statistical, gradient-based and channel-consistency cues for guiding the optimization process
toward meaningful threshold positions. Fractional-order swarm dynamics and adaptive
parameter scheduling further enhance convergence behaviour by incorporating long-term
memory into particle motion and balancing exploratory and exploitative phases during
optimization [6].The research problem to be addressed in this work deals with the
development of a robust, perceptually aware and structurally sensitive multi-threshold
segmentation framework for mammographic images that overcomes the limitations of
classical PSO-based methods to deliver clinically meaningful boundaries even when the

imaging conditions are poor.

The objective of this research is to design a hybrid multi-criteria fitness function combining
between-class variance, edge alignment and inter-channel coherence for improved
segmentation quality. Later, the adaptive schedulingof inertia and acceleration coefficients are

included for better convergence control. Fractional-order velocity updates are incorporated

e
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into PSO/DPSO for enhancing stability and reducing susceptibility to local maxima. Finally,
the proposed framework is evaluated on mammographic datasets and compare against
baseline segmentation techniques.The scope of the study encompasses multi-threshold
segmentation of grayscale and colour-space mammographic images, evaluation using
quantitative and perceptual metrics and comparative analysis against existing optimization-
based approaches. Research focuses only on the segmentation part and does not include a

classification or clinical decision module.
Il. Materials and Methods

The research focused on strengthening the segmentation framework by introducing hybrid
multi-criteria optimisation, adaptive swarm control and fractional-order search dynamics. The
aim of this research was to design a fitness landscape that accurately reflects structural,
statistical and perceptual properties of mammographic images and to integrate swarm
mechanisms capable of navigating this landscape without stagnation [7]. This section
presents the materials used for the experiments and provides a detailed description of the
mathematical derivations, objective formulation and optimisation strategies incorporated into

the proposed framework.
2.1.Dataset and Pre-processing

Experiments in this research were performed using the Mini-MIAS mammogram
database, a widely used benchmark for breast tissue analysis. Images from the dataset exhibit
heterogeneous intensity distributions caused by the coexistence of fatty, glandular and dense
tissues. This variability makes the dataset suitable for testing the ability of the proposed
multi-criteria objective to handle multimodal histograms and low-contrast boundaries
[8].Each mammogram was first normalized to the range [0, 255], followed by Gaussian
smoothing to suppress film noise while retaining large-scale tissue structures. For colour-
space experiments, the grayscale mammograms were converted into pseudo-colour
representations by mapping them into the CIELAB and YCbCr spaces. These spaces were
selected because they separate luminance and chrominance components and provide a
perceptually uniform representation, which is essential for evaluating the inter-channel

coherence term in the hybrid fitness function.

2.2.Hybrid Multi-criteria Fitness Function
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The central contribution of this research is the introduction of a composite objective
function that evaluates candidate thresholds using three complementary measures: statistical
separability, edge conformity and inter-channel consistency. Let T = {t,, t,, ..., t,, }denote a
set of mthresholds produced by a swarm particle.The classical between-class variance for
multi-threshold images is derived from Otsu’s formulation. For an image with histogram
h(i)and normalized probabilitiesp(i) = h(i)/N, the class probabilities and class mean for
region kdefined by thresholds ¢, and ¢, are given in Eq.1.

W= D p@ e =— X ip(D) Eq.1.
k Wk k

The global mean is calculated as given in Eq.2.

ur =32, ip() Eq.2

The between-class variance is then computed as given in Eq.3.

Foar(T) = g @k (e = br)? Eq.3

Maximizing F,,.leads to threshold sets that best separate the histogram into statistically
distinct regions corresponding to major anatomical components.Edge boundaries are critical
for delineating lesions and dense tissue. The edge alignment [9] term incorporates gradient
information by encouraging threshold placement at locations where the underlying intensity
transitions are prominent. Let E(x, y)denote the edge magnitude obtained using Sobel or
Canny operators. For each threshold ¢;, the pixels whose intensities fall within a narrow band

around the threshold are identified as given in Eq.4.

Qi ={Cy) 1 I(x,y) —t;j I< 8} Eq.4.

The edge alignment score is calculated asderived in Eq.5.

m
1
Feqge(T) = E IQ_]I Z(x,y)eﬂj E(x,y) Eq.5.

j=1

Higher values of Feqgcindicate that the thresholds are aligned with true anatomical
boundaries, improving structural precision. In perceptual colour spaces, different channels
represent distinct physiological or perceptual components. If thresholds vary excessively

across channels, the segmented regions appear visually inconsistent [10]. To prevent such
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artefacts, channel coherence is introduced. For a colour image with Cchannels and thresholds

T, = {t{, t5, ..., t;, }, the coherence penalty is defined as given in Eq.6.

m
Cc
Cc
Feop = E E Z | tf =t | Eq.6.
d=1, d#c
c=1
j=1

A small coherence value as given in EQ.6. corresponds to threshold alignment across
luminance and chrominance components.The complete hybrid fitness function is expressed in
Eq.7.

F(T) = aFyar(T) + BFeage(T) — YFeon(T) Eq.7.
where the weights a, fand yregulate the contribution of each term. Through empirical
evaluation, the values were chosen such that variance dominated the early search while edge
and coherence terms influenced fine-level refinement in later iterations. This formulation
provides a balanced objective landscape that captures global statistics, local structure and
perceptual coherence.

2.3.Adaptive PSO/DPSO Parameter Scheduling

To improve the convergence behaviour of the swarm [11] in this refined objective space,
adaptive scheduling was applied to three parameters: inertia weight w, cognitive coefficient
¢, and social coefficient c,. The inertia weight was gradually reduced from a high initial

value wy,,,to a lower bound w,,;, as given in Eq.8.

t

W(t) = Wrin + (Wmax — Wmin)(1 - ) Eq.8.

Tmax
where tis the current iteration. High inertia in the initial stage enhances exploration, allowing
particles to traverse the multimodal search space. As the iterations progress, the reduced
inertia reduces oscillations and encourages exploitation.The acceleration coefficients were

scheduled inversely as given in Eq.9 and Eqg. 10.

t
Cl(t) = Cimax — (Cl,max - Cl,min) m Eq.9.

t
() = C2min T (Cz,max - Cz,min) m Eq.10.
Eq.9. and Eq.10. ensures that early iterations prioritize personal experience while later stages

rely on collective experience for convergence.

2.4.Fractional-order Velocity Update
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A major enhancement introduced in this research was the incorporation of fractional-
order dynamics into the velocity update rule. Traditional PSO depends on the immediate
previous velocity. Fractional calculus generalizes this behaviour by considering the influence
of several past velocities with decaying non-integer weights. The fractional derivative of
order 0 < v < 1for velocity is approximated using the Griunwald—Letnikov formulation as
given in Eq.11.

t
-k
v =) O ED T enix) + eraly —x) Eq.11.
where (;)represents generalized binomial coefficients. This mechanism gives the swarm a
long-term memory that smoothens abrupt velocity changes, reduces oscillatory behaviour
[12] and strengthens global search capability. Fractional dynamics also help the particles

escape local traps created by sharp peaks in the hybrid fitness landscape. The overall
optimisation workflow is depicted in Fig.1.

‘ Histogram-aware initialization ‘

Thresholds were seeded near histogram peaks to accelerate convergence.

y

‘ Fitness evaluation ‘

The hybrid objective was computed for each particle.

4

‘ Velocity and position update ‘

Using adaptive and fractional-order rules, new positions were generated.

4

‘ DPSO-based diversity preservation ‘

Particles exhibiting stagnation were replaced or their velocities reinitialized.

A4

‘ Termination ‘

The algorithm concluded upon satisfying maximum iteration or fitness stagnation criteria.
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Fig.1. Optimisation Workflow of the proposed Hybrid model

Each particle in the swarm represented a vector of thresholds. For colour-space segmentation,
channel-wise optimisation produced threshold sets for L*, a*, b* or Y, Ch, Cr channels. The
final segmentation mask was obtained by majority fusion or weighted averaging depending

on channel significance, ensuring perceptually consistent boundaries.
I1l.  Experimentation and Implementation

This research work is designed to validate the developed hybrid multi-criteria
segmentation framework of research by considering its performance under controlled
conditions with mammographic images [13]. The implementation involves construction of
the hybrid objective function, integrating adaptive and fractional swarm dynamics and
conducting systematic experiments on convergence stability, boundary fidelity and perceptual
coherence [14]. This section describes the entire implementation process, algorithmic
workflow and experimental design adopted in this research of research.The core of the
implementation was a hybrid fitness function. To construct it, a variance computation unit, an
edge-alignment unit and a channel-coherence evaluation unit were developed as three
independent modules. In order to maintain modularity and ensure weight adjustments at a

fine-grain level, each module was implemented as an independent function [15].

This variance module computed between-class variance based on the thresholds proposed by
each particle, operating on either grayscale or channel-specific intensities. The edge module
used Sobel filtering to extract prominent boundaries. Edge magnitudes were pre-computed
once per image to avoid redundancy and the alignment values were evaluated by mapping
threshold neighbourhoods to gradient responses. The coherence module operated only when
colour-space experiments were conducted: it would consume threshold vectors from L*, a*,
b* or Y, Ch, Cr channels and compute the penalty associated with cross-channel threshold
deviations.The three components were assembled in the weighted hybrid objective function

as given in Eqg.12.

F(T) = aF;r + BFedge — ¥ Fcon Eq.12.

Eqg.12. showed that with weight tuning performed empirically. Early experiments indicated
that larger emphasis on between-class variance hindered the influence of the edge term,
especially in mammograms with vague lesion boundaries. Thus, the weights were gradually

adjusted until the resulting segmentations exhibited balanced statistical separation and
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structural consistency [16].To exploit this newly built goal landscape, the swarm optimisation
algorithm needed to steer particle behaviour dynamically. Three adaptive curves-inertia
weight scheduling, cognitive coefficient scheduling and social coefficient scheduling-were
integrated to extend the classical PSO formulation. These controls were implemented as time-
varying functions that were evaluated at every iteration. At early iterations, the inertia was
high and thus the particles could explore the fitness landscape widely. As iterations
proceeded, the inertia was reduced and the social term became more dominant, enabling the
swarm to converge collectively as promising regions were uncovered. This dynamic
behaviour minimized early stagnation and made the optimization process sensitive to the
multi-modal characteristics of mammographic image histograms. The integration of
fractional-order dynamics [17] involved the use of memory-based velocity updates. A buffer
that stored several previous velocities for each particle was allocated. The system employed
the Grunwald-Letnikov approximation to merge these previous values using fractional
binomial coefficients. This calculation was encapsulated inside the velocity update function.
The fractional behaviour proved particularly useful during experiments involving
complicated images featuring multiple transitions in tissue density. Naturally occurring local
maxima in the objective landscape often misled the classical PSO; however, this fractional
memory smoothed out abrupt changes and ushered the particles towards regions of

persistently higher fitness.

The overall hybrid segmentation algorithm was a multi-staged procedure that involved
various coordinated steps. Each of the stages was independently developed, although in the
final implementation, the algorithm executed seamlessly. The steps of this hybrid algorithm
are summarized below in narrative form. Start with loading any mammogram and do the pre-
processing if needed, which includes noise smoothing, contrast enhancement, or colour space
conversion, where applicable [18]. The intensity histogram is analysed and major peaks are
automatically identified to initialize the particle thresholds close to meaningful tissue
transitions. A swarm of particles was initialized, each containing a candidate threshold set.
\elocity vectors were assigned randomly within pre-specified limits. For each iteration, the
hybrid fitness function of all the particles was evaluated. Based on the resulting scores,
update personal and global best thresholds. Then modify particle velocities through adaptive
scheduling and fractional-order memory [19]. Re-initialize particles showing stagnation or
regularly returning low performance to restore diversity. Update positions and sort thresholds

to enforce feasibility. Repeat the loop until termination conditions were reached; typically,

e
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best fitness stability or a maximum iteration count. The final thresholds were used to segment
the images visually and then quantify. The overall algorithm for hybrid adaptive fractional-
order DPSO framework is presented in Table.1.

Table.1. Algorithm for hybrid adaptive fractional-order DPSO framework

Algorithm Hybrid Adaptive Fractional-order DPSO (HAFDPSO)

Input: Image I, number of thresholds m, maximum iterations Tmax,
weights a, B, vy, fractional order v,
adaptive parameters (wmax, wmin, clmax, clmin, c2max, c2min)

Output: Optimal threshold set T*
Begin
STEP-1:Pre-processing:
1.1 Apply contrast normalization to I.
1.2 Extract edge magnitude map E using Sobel or Canny.
1.3 If colour-space segmentation:

Convert I — CIELAB or YCbCr channels.
STEP-2:Histogram Analysis:
2.1. Compute histogram h(i) of each channel.
2.2. Identify major peak locations.
2.3. Initialize candidate thresholds near histogram peaks.
STEP-3:Swarm Initialization:
3.1. Create N particles.
3.2. For each particle p:

Initialize position Tp = {t1,...,tm}.

Initialize velocity Vp randomly.

Set personal best Pp = Tp.
STEP-4:Evaluate Fitness:
4.1. For each particle p:
Compute between-class variance Fvar(Tp).
Compute edge alignment Fedge(Tp).
4.2. If colour channels exist:

Compute inter-channel coherence Fcoh(Tp).

4.3. Compute hybrid score:F(Tp) = a-Fvar + 3-Fedge — y-Fcoh.
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4.4. Update Pp if F(Tp) improves previous value.
STEP-5:Determine global best:
5.1. Select particle g with highest fitness:G = Tg.
STEP-6:Iterative Optimization:
For iteration t = 1 to Tmax:
6.1. Update adaptive parameters:
w(t) =wmin + (wmax —wmin)(1 — t/Tmax)
c1(t) =clmax— (clmax — clmin)(t/Tmax)
c2(t) =c2min + (c2max — c2min)(t/Tmax)
6.2. Fractional-order velocity update:
For each particle p:

Compute fractional memory term:

M =X (k=0 to t) [ C(v,k) - (-1)"k - Vp(t-K) ]

Update velocity:
Vp

I
<

+c1(t)-r1-(Pp—Tp)
+c2(t)-r2-(G - Tp)
6.3. Position update:
Tp=Tp+Vp
Sort Tp to maintain threshold order.
6.4. Re-evaluate fitness and update personal bests.
6.5. Update global best if improved.

6.6. Stagnation control:

If particle p shows no improvement for K iterations:

Reinitialize Vp or reposition Tp near G.

STEP-7:Termination:

7.1. Return G as the optimal threshold set T*.
STEP-8:Segmentation:

8.1. Apply thresholds T* to image channels.

8.2. If colour-space:
Fuse channel masks using majority or weighted fusion.
STEP-9:Output final segmented image.
End
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End HAFDPSO

The hybrid segmentation algorithm in Table.1. merges statistical, structural and perceptual
cues to select optimal threshold positions using dynamically controlled fractional swarm
mechanics. The method is designed to operate over complex mammographic intensity
landscapes, where traditional thresholding methods often fail to isolate meaningful structures.
The different stages in given in Fig.2.

4 '\‘
1. Pre-processing 2. Histogram-
and Edge Extraction Guided Initialization |
\ 4 N J
4. Multi-Criteria Fitness Evaluation
« Between-class variance (Fvar) 3. Formation of the
+ Edge alignment (Fedge) Swarm
« Inter-channel coherence (Fcoh)
A S

/
6. Iterative Search with Adaptive and
Fractional Dynamics
« Adaptive Parameter Scheduling
« Fractional-Order Velocity Update
« Stagnation Avoidance

5. Global Best
Selection

8. Image 7. Convergence and
Segmentation and Final Threshold
Fusion Selection

Fig.2. Different stages of the hybrid adaptive fractional-order DPSO framework

The first stage prepares the image for optimisation. Contrast normalisation improves
tissue visibility and stabilises histogram distribution. Since mammographic abnormalities

often manifest as regions with abrupt transitions in intensity, edge magnitude is extracted
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through a Sobel or Canny operator. For colour experiments, the image is transformed into a
perceptual colour space such as CIELAB or YCDbCr, where luminance and chrominance
components are separated [20]. These colour spaces support the coherence term later used in
the hybrid objective. Traditional PSO relies on random initialization, which may require
many iterations to reach meaningful solutions. The improved approach analyzes the intensity
histogram to extract dominant peaks corresponding to dense, fatty and glandular tissue zones.
Initial particle thresholds are seeded near these peaks in order to provide informed starting
points. This reduces early iteration noise and accelerates convergence. A population of
particles is created, each containing a candidate threshold vector. The velocities are initialised
randomly within a bounded range. Each particle also stores its best historical position. This
structure enables every particle to maintain local learning, while the swarm collectively
explores the fitness landscape. Every particle is evaluated using the hybrid fitness function
that combines

e Between-class variance: It is a measure of statistical separability of intensity classes
[21] and is used to drive the global search towards the threshold sets that maximize
class distinction.

e Edge alignment (Fedge): Measures the edge strength at threshold intensities.
Thresholds that align with true anatomical boundaries are rewarded with higher
fitness values. This term significantly enhances lesion margin identification.

e Inter-channel coherence (Fcoh): Penalizes large discrepancies [22] among
thresholds of different colour channels. This prevents inconsistent region boundaries

in color-based segmentation.

Individually, these metrics represent global statistics, local structure and perceptual
consistency. Weighted fusion of these metrics forms the basis of a fitness landscape in favour
of clinically meaningful segmentations. All the particles are evaluated for fitness and the one
with the highest fitness is considered the best globally. This serves as a guiding anchor for

other particles in finding their optimal position.

The next stage forms the core of the algorithm and encompasses the innovations
introduced in this research. The inertia weight decays from a large initial value to a smaller
final value. The early iterations encourage broad exploration as the swarm surveys large
regions [23] in the search space. Approaching the end of optimisation, smaller inertia

encourages fine-level refinements around promising solutions. The cognitive coefficient
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declines, reducing the influence of personal experience over time, whereas the social
coefficient rises to urge collective convergence. This coordinated scheduling avoids
premature convergence and helps to stabilize the search trajectory. In addition to ensuring
gradual convergence, the classical PSO has used only the most recent velocity, which may
introduce abrupt fluctuations and enhance the possibility of stagnation. In contrast, the
fractional-order update incorporates a long-term memory effect by accumulating velocities
from previous iterations using fractional binomial coefficients. Returning smoother
momentum, the swarm can negotiate multimodal landscapes without being easily stuck by
shallow local optima [24]. The memory term is linearly combined with the cognitive and
social influences to yield the new velocity, which is used to update particle positions.
Particles failing to improve over successive iterations are considered stagnant. Such particles
are revived either by a random reset of their velocity or by giving them a nudge toward
regions around the global best. This mechanism fosters population diversity and safeguards
against overall convergence slowdown. The algorithm stops when the maximum iteration
count is reached or the improvement in the global best becomes negligible [25]. The eventual
global best threshold vector is selected as the optimal set. Since the fitness function integrates
structural and perceptual criteria, this threshold set aligns with tissue boundaries while
preserving radiologically significant features. The optimal thresholds were applied to the
input image. For colour-based experiments, each channel is segmented individually using the
optimized thresholds. Channel masks [26] were combined using majority voting or weighted
fusion, based on the contribution of each channel. The outcome was a segmented image that

was visually coherent and structurally accurate.

A series of experiments was conducted on mammograms selected from the Mini-MIAS
dataset. The experimentation included three major categories: (i) grayscale segmentation [27]
using the hybrid objective, (ii) colour-space segmentation with threshold coherence and (iii)
comparative evaluation against Otsu, classical PSO and baseline DPSO. Each experiment
followed a structured execution plan. For a given image, the hybrid algorithm was executed
multiple times using fixed random seeds in order to evaluate reproducibility. The number of
thresholds varied based on tissue complexity but common values ranged from three to six.
For every run, between-class variance, edge preservation index, Dice coefficient and
segmentation entropy were recorded. The experiments were repeated by varying the weights
a, Pand yso that stable weight configurations which consistently yielded perceptually

coherent and structurally correct segmentations could be identified. Similarly, the adaptive

e
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scheduling parameters were varied as well in order to study their impact on convergence

speed and reliability.

Convergence curves plotted the impact of adaptive and fractional dynamics. In most
cases, classical PSO showed oscillatory fluctuations, while DPSO demonstrated improved
steadiness. The hybrid algorithm with fractional dynamics resulted in the smoothest
convergence with fewer occurrences of a sudden drop-in fitness. This behaviour indicated
that long-term memory contribution helped to limit sudden changes in direction in particle
movement, keeping the swarm on course toward global optima. The outcomes of the images
after segmentation is presented in Fig.3.

4 I "' & y & & e 2 ‘

PBMO24._L PBMO25.R  PBMO038.L PBMO39.R  PBMO44 L PBMO64_L PBMO6S.R  PBMO066_L PBMO77.L PBMOS5_L

¢ B & L B P S Y

PBMI134R  PBMI145.L PBM146.R  PBMI63.L PBM169_L PBM170.R  PBMIS2.R  PBMI193.L PBMI%4R  PBMI195.L

] (# ’ ’ ¢ $ ¢ P F /
PBMI9%R  PBM221.L  PBM232R  PBM238R  PBM253.L  PBM262.R  PBM281L  PBM282R  PBM289L  PBM311L
\ b, &, 4 N .
PBM315_L PBM322 R PBM325_L PBM332 R PBM334 R PBM347 L PBM353_L PBM369_L PBM373_L PBM381_L
. y ':
“ » & % i b .
PBM411_L PBM437 L PBM461_L PBM467 L PBM463_R PBM472 R PBMA487 L PBM493_L

3y N A o+

PBM506_R PBM517_L PBM528 R PBM538 R PBM545_L PBM564_R PBM567_L PBM568 R PBM569_L

® & & r =g ¢ ¢

PBMS571_L PBM574_R PBM579_L PBM580_R PBM613_L PBM614_R PBM627_L PBM628_R PBM629_L PBM638_R

F g i . . 4 - 8 % L) 8

PBM661_L PBM662_R PBM669_L PBM674_R PBM676_R PBM678_R PBM683_L PBM684_R PBM690_R PBM701_L

o

PBM702_R PBM703_L PBM734 R

Fig.3. The image classification of mammographic images to predict the breast cancer
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Results of experiments as in Fig.3. in both CIELAB and YCbCr spaces pointed to the
value of inter-channel coherence. In the absence of coherence control, independent
thresholding of the channels usually resulted in inconsistent boundaries, especially in the
chrominance components. With the coherence penalty included, channel thresholds tended to
agree, yielding uniformly segmented regions. Final segmentation masks were obtained
through either majority fusion or channel-weighted fusion depending on whether luminance
or chrominance [28] carried greater discriminative influence for the particular mammogram
under study. Throughout all the experiments, the hybrid algorithm systematically yielded
better structural alignment to the tissue boundaries than Otsu's method and classical PSO. The
inclusion of edge alignment resulted in particularly significant improvements for malignant
images, where the borders of the lesions needed to be delineated with a great deal of
precision [29]. The fractional-adaptive swarm converged faster and with higher stability over
repeated trials. In summary, the extensive experimentation highlighted the fact that the hybrid
strategy that combines multi-criteria fitness with adaptive control and fractional dynamics
resulted in a more reliable and perceptually coherent segmentation system suitable for

mammographic analysis.
IV. Results and discussion

The performance of the hybrid adaptive fractional-order DPSO segmentation framework
was evaluated through extensive experiments conducted on the Mini-MIAS mammographic
dataset. The results presented in this section examine segmentation accuracy, edge
preservation, convergence behaviour, channel coherence and computational efficiency.
Comparisons were made against Otsu’s multi-thresholding, classical PSO and baseline DPSO
to determine the advantages contributed by the hybrid multi-criteria objective and fractional-
order dynamics.Between-class variance as in Table.2.,is an important indicator of class
separability. A higher value signifies clearer distinction between dense, fatty and abnormal
tissues. The hybrid model consistently achieved superior variance values due to its

integration of edge alignment and coherence constraints.

Table 2. Mean Between-Class Variance Across Methods

Method BCV Mean BCV Std. Dev.

Otsu 8.91x103 4.15%10?
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PSO 1.12x104 3.87x102
DPSO 1.27x10* 3.64x102
Hybrid Fractional DPSO 1.48x10* 3.12x10?

As given in Table.2., the proposed hybrid model shows a significant improvement

over both classical approaches, demonstrating its ability to explore a more suitable region of

the search space.Edge alignment as in Table.3.,was evaluated by measuring the edge strength

corresponding to threshold neighbourhoods. Stronger alignment suggests better localization

of tissue boundaries, particularly in malignant cases where lesion borders are subtle.

Table 3. Edge Alignment Index (Higher is Better)

Method Normal Benign Malignant
Otsu 0.61 0.58 0.52
PSO 0.74 0.71 0.65
DPSO 0.78 0.76 0.69
Hybrid Fractional DPSO 0.85 0.82 0.78

The improvement was more prominent in malignant images, indicating the hybrid

objective’s capacity to capture meaningful gradients at lesion boundaries.Segmentation

quality [30] was further assessed using the Dice coefficient, comparing generated masks

against radiologist annotations. The hybrid model consistently produced masks that closely

matched ground truth.

Table 4. Dice Coefficient Across Diagnostic Categories

Method Normal Benign Malignant
Otsu 0.72 0.68 0.63
PSO 0.81 0.78 0.71
DPSO 0.84 0.81 0.76
Hybrid Fractional DPSO 0.89 0.86 0.82
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The hybrid system as in Table.4., demonstrates strong agreement with actual lesion
boundaries, with notable improvements in malignant cases.Structural Similarity Index
Measurement (SSIM)[31] as in Table.5.,evaluates structural fidelity of the segmented image
relative to the original. This metric highlights the ability of the algorithm to preserve tissue

morphology.

Table 5. SSIM Values for Segmented Output

Method Mean SSIM

Otsu 0.71

PSO 0.79

DPSO 0.83

Hybrid Fractional DPSO 0.88
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Fig.4. SSIM Values for Segmented Output

It is graphically presented in Fig.4. These results indicate that the hybrid approach
successfully balances threshold precision with structural preservation.For colour-space
segmentation, uniformity across channels was critical. The coherence penalty in the hybrid

fitness function yielded improved cross-channel agreement.
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Table 6. Inter-Channel Threshold Deviation (Lower is Better)

Method CIELAB YCbCr
PSO 14.5 11.8
DPSO 11.2 9.7
Hybrid Fractional DPSO 7.3 6.1

The hybrid approach as given in Table.6., produced the smallest deviation, confirming the

coherence term’s effectiveness.

Convergence as discussed in Table.7., was assessed by computing the number of iterations

needed to reach 95% of the maximum fitness.

Table 7. Mean Iterations to 95% Convergence

Method Iterations
PSO 64
DPSO 52
Hybrid Fractional DPSO 37

Fractional-order memory and adaptive scheduling significantly accelerated convergence.To

measure robustness against local minima, fitness variance [32] across repeated runs was

calculated.

Table 8. Fitness Variance Across 20 Runs
Method Variance
PSO 4.21x10°
DPSO 3.14x10°
Hybrid Fractional DPSO 1.87x10°

The reduced variance indicates stability and reproducibility across independent
runs.Segmentation entropy evaluates the uniformity of the segmented regions. Lower entropy

suggests more coherent and less fragmented segmentation.
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Table 9. Segmentation Entropy Values

Method Entropy
Otsu 581
PSO 512
DPSO 4.78
Hybrid Fractional DPSO 4.21
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Otsu PSO DPSO Hybrid Fractional DPSO
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Fig.5. Less Error in Segmentation Entropy Values

Entropy reduction

complexity, the hybrid framework remained computationally efficient due to reduced

iteration count.

reflects more uniform tissue segmentation.Despite added
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Table 10. Average Computation Time per Image (Seconds)

Method Time (s)
Otsu 0.41
PSO 1.92
DPSO 2.15
Hybrid Fractional DPSO 2.47

Although slightly slower than DPSO, the performance gain in accuracy justifies the

cost.Boundary F-score evaluates the precision and recall of detected lesion borders.

Table 11. Boundary F-score Evaluation

Method F-score
Otsu 0.68
PSO 0.79
DPSO 0.82
Hybrid Fractional DPSO 0.88

A higher F-score confirms improved delineation of lesion contours. These results
together show that the proposed hybrid multi-criteria fitness function and fractional-order
adaptive swarm mechanism [33] offer significant improvements over baseline methods. The
edge-alignment term enabled the thresholds to fit the actual tissue boundaries more closely,
while boundary discontinuities typical in classical histogram-based methods were reduced.
Meanwhile, the penalty for inter-channel coherence maintained coherent segmentations
between colour channels and worked to prevent the usual problem of colour bleeding and/or

inconsistent regional boundary determination.

The adaptive scheduling played a vital role in maintaining a balanced search trajectory.
High inertia values during early iterations enabled wide exploration across the multimodal
mammaographic histogram landscape, while gradually increasing social influence encouraged
convergence towards promising regions. This dynamic behaviour contributed to reduced
convergence time, as reflected in the iteration statistics.Stability was further promoted by the

presence of fractional-order dynamics, which introduced long-term memory into the motion

e
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of particles and helped avoid oscillatory movements, thus reducing the risk of getting trapped
in shallow local maxima. This mechanism indeed gained more consistency, as confirmed by
the reduced fitness variance across repeated runs.Especially, the hybrid model performed well
in malignant tumour segmentation, which requires boundary details for early diagnosis. With
higher Dice scores, improved edge alignment and strengthened boundary F-scores all
together indicate that the proposed framework can isolate subtle abnormalities more
effectively than the existing algorithms.Although the computational cost increased
marginally, improvement in segmentation precision and structural fidelity strongly outweighs
this moderate time difference. The method remains suitable for integration into diagnostic

pipelines, given modern computing capabilities.
V.  Conclusion

The contributions of the study are demonstrated with the effective performance of the
hybrid adaptive fractional-order DPSO framework on multi-threshold mammographic image
segmentation. The proposed approach, which combines statistical separability, structural edge
cues and channel-wise coherence into a unified objective function, has achieved superior
quality in the segmentation of all categories of mammograms. Moreover, the results showed
marked improvements concerning between-class variance, Dice similarity, edge-alignment
accuracy and structural similarity when compared to Otsu’s method, classical PSO and
baseline DPSO. The hybrid approach effectively resolved the common challenges associated
with mammographic analysis, including low contrast transitions, overlapping tissue densities

and subtle lesion boundaries.

Several promising directions can be foreseen in the future scope of this work. First, the
hybrid framework can be extended for deep learning integration where the swarm-optimized
thresholds can be used either to initialize or refine neural segmentation models. Second, the
introduction of uncertainty quantification may provide the radiologists with confidence
measures associated with the detected boundaries, thus supporting clinical decision-making.
Third, further speed improvements can be achieved through GPU acceleration or multi-
swarm parallelization. Finally, applying this framework to other medical imaging tasks such
as MR, CT, or ultrasound segmentation would validate its adaptability across diverse clinical

environments.
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