

HYGIENIC ANALYSIS OF THE NUTRITIONAL STATUS OF UZKIMYOSANOAT WORKERS

Ortikov Bobomurod Baymamatovich¹, Buriboyev Eldar Mamurjonovich²,
Khaydarov Shovkatjon Madaminjon ogl³, Saidova Gulbakhor Tursunaliyevna⁴

¹PhD, Associate Professor Department of Hygiene of Children, Adolescents and Nutrition Tashkent State Medical University, Tashkent, Uzbekistan

Email: bobomurodortiqov89@gmail.com ORCID: <https://orcid.org/0000-0003-1182-8172>

²PhD, Associate Professor Department of Hygiene of Children, Adolescents and Nutrition Tashkent State Medical University, Tashkent, Uzbekistan Email: elwolfchik@gmail.com ORCID: <https://orcid.org/0000-0001-5470-4159>

³PhD, Senior teacher Department of Hygiene of Children, Adolescents and Nutrition Tashkent State Medical University, Tashkent, Uzbekistan

Email: sh.xaydarov77@gmail.com ORCID: <https://orcid.org/0009-0002-5763-5018>

⁴PhD, assistant Department of Hygiene of Children, Adolescents and Nutrition Tashkent State Medical University, Tashkent, Uzbekistan

Email: gulbaxorsaidova595@gmail.com ORCID: <https://orcid.org/0009-0002-0522-409X>

DOI: 10.63001/tbs.2025.v20.i04.pp1238-1237

Keywords
Worker nutrition, daily diet, seasonal nutrition (winter-spring and summer-autumn), physiological norms of food consumption.

Received on:

16-10-2025

Accepted on:

11-11-2025

Published on:

15-12-2025

ABSTRACT

Objectives: To analyze the dietary status of workers in a manufacturing enterprise both at home and in the workplace. To conduct a comparative analysis of the daily food consumption levels of workers in the winter-spring and summer-autumn seasons against physiological normative indicators. Based on the obtained results, to recommend a preventive dietary plan.

Aims: To conduct a hygienic analysis of the absolute dietary status of workers at AMMOFOS-MAKSAM-Uzkimyosanoat.

Methods: The study included 283 workers (185 men and 98 women) employed at AMMOFOS-MAKSAM-Uzkimyosanoat between 2021 and 2023. Data on their actual dietary intake at home and in the workplace was collected and analyzed using a questionnaire survey.

Results: The consumption levels of 38 types of food products in the daily diet of Uzkimyosanoat enterprise workers were analyzed for the winter-spring and summer-autumn seasons. The consumption of flour products ranged from 64.3–82.8% in winter-spring and 35.0–42.8% in summer-autumn. Bread consumption followed a similar trend, with 47.4–71.9% in winter-spring and 39.8–47.6% in summer-autumn. The consumption of pasta was 17.7–15.6 g and 12.6–10.8 g, confectionery products 30.6–27.9 g and 6.8–8.1 g, sugar 1.61–2.47 times and 1.57–2.43 times, margarine 302–376% and 244–234%, and salt 4.8–4.1 g and 2.7–1.8 g, all of which were found to be consumed in excess. Meanwhile, the supply indicator for milk and dairy products was only 56.3–55.1% in winter-spring and 29.3–31.3% in summer-autumn.

Conclusion: The daily intake levels of the above-mentioned food products were found to exceed physiological norms, whereas the intake of essential nutrients was insufficient. These dietary imbalances can lead to disruptions in rational and healthy nutrition, ultimately affecting workers' health. Ensuring proper nutrition is crucial for maintaining and strengthening workers' health and enhancing their work productivity.

1. Introduction

In the context of the rapid development of modern industry, unfavorable working conditions that affect the health of workers in manufacturing

enterprises remain a pressing issue. One of the key factors in maintaining workers' health is ensuring an adequate supply of essential nutrients

to the body. Any disruption in dietary patterns can negatively impact human health, reduce tolerance to unfavorable working conditions, decrease productivity, and contribute to the development of occupational diseases [6,10,16].

Nutrition is one of the primary determinants of human health, playing a crucial role in strengthening the body's immune system, ensuring longevity, and increasing resistance to adverse environmental effects. Deficiencies or excesses of macro- and microelements in the daily diet can lead to the development of various nutrition-related diseases. Overall, such issues significantly increase economic losses associated with workplace accidents and occupational diseases on a global scale. These losses account for approximately 4% of the world's gross domestic product (GDP) [5,19].

In cases where people live and work in ecologically unfavorable and hazardous conditions, therapeutic and preventive nutrition (TPN) plays an essential role in the system of medical and preventive measures aimed at preserving and improving health [2, 14, 18].

An assessment of the actual dietary habits of workers in manufacturing enterprises shows that 47% of them use the company's cafeteria during working hours, while 50% bring homemade food. The remaining 3% of workers do not eat at all during their shifts. The reasons for not using the company cafeteria vary: first, the continuous nature of the production process does not allow for breaks. Second, the distance between dining facilities and workplaces is another significant factor. Third, the allocated break time for lunch and preventive hot meals is insufficient [1,3,17].

These factors negatively impact workers' overall health and can contribute to the development of occupational diseases [4,12,13].

As a result of poor dietary habits, workers' bodies do not receive adequate nutrients. Deficiencies or imbalances in proteins, vitamins, and essential macro- and microelements (such as calcium,

iodine, iron, and fluoride) in the daily diet can lead to health deterioration [5,7,8,11].

The primary goal of therapeutic and preventive nutrition is to enhance the body's protective and adaptive abilities. This process aims to strengthen the body's resistance through food consumption, reinforce physiological defense mechanisms, regulate the metabolism of xenobiotics, and reduce the depletion of food and biologically active substances[9,15,20].

2. Methods

The study included 283 workers (185 men and 98 women) employed at AMMOFOS-MAKSAM-Uzkimyosanoat between 2021 and 2023. Data on their actual dietary intake (both at home and in the workplace) was collected using a questionnaire survey. For statistical processing, the "Statistica for Windows 7.0" software package was used on a personal computer.

3. Results

Our study conducted a hygienic analysis of the actual dietary status of 283 workers at AMMOFOS-MAKSAM-Uzkimyosanoat, located in Olmaliq district, Tashkent region. In the first stage of the study, the daily energy expenditure of the workers at Uzkimyosanoat was analyzed. Based on the physical activity coefficient (1.9), their work intensity and physical workload were classified under Group 3 (2,500–3,300 kcal), in accordance with the normative indicators from SanMvaQ 0007-20 ("Average daily rational nutrition norms for different age, gender, and occupational activity groups in the Republic of Uzbekistan").

In the next stage, the dietary habits of Uzkimyosanoat workers were analyzed. The first stage, conducted during the winter-spring season, examined the daily diet composition of workers from a textile enterprise. A comparative analysis of 38 types of food products in the workers' daily diet against physiological normative indicators is presented in Table 1.

Table 1. Analysis of the absolute dietary status of AMMOFOS-MAKSAM-Uzkimyosanoat workers during the winter-spring season.

No.	Products	Physiological standard , gr		Winter-spring season	
		Male	Woman	Male workers	Woman workers
1	Flour	30	25	49.3±1.5	45.7±1.3
2	Rice	55	50	70.5±1.9	62.2±1.5
3	The gluttons	25	25	55.1±1.3	49.4±1.1
4	Bread and bakery products	250	220	368.5±12.8	378.3±11.2
5	Pasta	55	50	72.7±1.6	65.6±1.7
6	Potato	280	250	260±8.7	235±6.1
7	Cucumber , tomato	110	95	50.8±2.1	55.1±2.0 *
8	Beetroot and carrots	90	85	92.6±4.1	89.9±3.2
9	Other vegetable	90	85	92.2±4.1	89.4±3.2
10	Pomegranate crops	70	60	73.2±3.4	65.5±3.1
11	Pumpkin	60	60	8.1±0.1	6.3±0.1 *
12	Fruits	40	40	48.6±0.4	55.4±0.2
13	Grapes	250	250	189.2±5.4	196.1±4.2
14	Beef	40	40	38±1.2	36±1.3
15	Sheep meat	65	60	86±1.7	83±1.9
16	Internal products	30	20	16.7±0.9	13.4±0.8 *
17	Chicken	8	5	11.8±0.4	10.3±0.3
18	Sausage	70	65	74.6±2.1	67.8±2.3
19	Fish	25	15	31.9±0.3	30.1±0.1
20	Fish products	40	35	51.7±1.7	44.5±1.1
21	Fish canned food	30	30	36±1.4	32±1.3
22	Milk	400	400	181.4±4.1	172.0±3.7
23	Milk products	22	22	18±0.2	19±0.4
24	Cheese	20	20	22.3±1.3	27.1±1.1 *
25	Cottage cheese	50	45	55.2±0.3	50.3±0.5
26	Egg	1	1	1.9±0.03	1.6±0.03 **
27	Sugar	35	20	56.2±1.2	49.5±1.1
28	Margarine	5	5	20.1±0.8	23.8±0.9
29	Plant oil	35	25	48±1.5	38±1.3
30	Mash	6	6	8.8±0.1	7.9±0.1 **
31	Beans	6	6	9.7±0.3	7.6±0.2
33	Letter No.	8	8	17.6±0.4	13.7±0.3
34	Salt	5	5	9.8±1.4	9.1±1.2
35	End paste	5	5	9.7±0.5	7.6±0.1
36	Coffee	2	2	2.4±0.01	2.9±0.01 **
37	Butter	35	30	41.7±0.8	40.3±0.9 *
38	Confectionery products	40	40	70.6±4.1	67.9±3.2

Based on the data presented in Table 1, it is evident that the daily diet of Uzkimyosanoat enterprise workers contains significantly higher levels of nearly 30 types of food products compared to physiological norms.

The daily supply level of flour in the workers' diet was found to exceed physiological norms by 64.3% (19.3 g)–82.8% (20.7 g). In addition to exceeding the recommended intake, an important

observation regarding bread consumption is that it is primarily supplied in the form of wheat flour-based bread and bakery products. The consumption of these products was 147.4% (368.5±12.8 g)–171.9% (378.3±11.2 g) of the physiological norm.

The consumption of pasta products was as follows: 72.7±1.6 g for male workers and 65.6±1.7 g for female workers, which exceeded physiological

norms by 17.7–15.6 g. During the cold season, daily confectionery product consumption exceeded the norm by 30.6 g in male workers and 27.9 g in female workers. The daily sugar intake was 1.61 times higher than the norm in men and 2.47 times higher in women. Daily margarine consumption was 20.1 ± 0.8 g (402%) for male workers and 23.8 ± 0.9 g (476%) for female workers, indicating a significant excess. The daily consumption of

potatoes was 260 ± 8.7 g (92.8%) for male workers and 235 ± 6.1 g (94%) for female workers. The daily salt intake was 9.8 ± 1.4 g (196%) for men and 9.1 ± 1.2 g (182%) for women, which significantly exceeded the recommended levels. The total daily intake of milk and dairy products was 276.9 g for male workers and 268.4 g for female workers, with supply levels at 56.3% and 55.1%, respectively.

Table 2. Analysis of the absolute dietary status of AMMOFOS-MAKSAM-Uzkimyosanoat workers during the summer-autumn season.

No.	Products	Standard, gr		Summer- autumn	
		Male	Woman	Male workers	Woman workers
1	Flour	30	25	4.05 ± 0.9	35.7 ± 0.7
2	Rice	55	50	6.30 ± 1.4	6.18 ± 1.3
3	The gluttons	25	25	37.2 ± 0.3	36.4 ± 0.4
4	Bread and bakery products	250	220	34.95 ± 10.4	324.7 ± 9.8
5	Pasta	55	50	67.6 ± 1.4	60.8 ± 1.3
6	Potatoes	280	250	29.15 ± 5.2	27.26 ± 6.1
7	Cucumber, tomato	110	95	113.9 ± 3.1	103.5 ± 2.4
8	Beetroot and carrots	90	85	75.7 ± 2.5	79.3 ± 2.4
9	Cabbage	55	50	66.2 ± 0.3	64.3 ± 0.9
10	Other vegetable	70	60	74.9 ± 2.4	71.4 ± 2.3
11	Pomegranate crops	60	60	73.8 ± 0.8	69.5 ± 0.6
12	Pumpkin	40	40	41.5 ± 0.3	43.4 ± 0.5
13	Fruits	250	250	238.7 ± 6.1	230.8 ± 5.1
14	Grapes	40	40	62.3 ± 1.4	54.6 ± 1.7
15	Beef	65	60	78.1 ± 2.4	75.8 ± 1.4
16	Sheep meat	30	20	16.9 ± 1.0	13.7 ± 1.1
17	Internal products	8	5	3.2 ± 0.1	3.8 ± 0.1
18	Chicken	70	65	74.6 ± 1.7	66.4 ± 1.2
19	Sausage	25	15	26.5 ± 0.4	17.4 ± 0.7
20	Fish	40	35	35.2 ± 0.7	30.6 ± 0.9
21	Fish products	30	30	28.1 ± 1.1	26.2 ± 0.8
22	Fish canned food	22	22	19.3 ± 0.1	$18.4 \pm 0.2^*$
23	Milk	400	400	117.4 ± 2.4	125.3 ± 2.3
24	Milk products	20	20	21.3 ± 0.7	24.7 ± 0.6
25	Cheese	20	20	14.5 ± 0.3	12.9 ± 0.2
26	Cottage cheese	50	45	43.8 ± 0.3	$41.6 \pm 0.1^*$
27	Egg	1	1	1.5 ± 0.01	$1.2 \pm 0.01^{**}$
28	Sugar	35	20	54.9 ± 0.9	48.6 ± 0.9
29	Margarine	5	5	12.2 ± 0.4	11.7 ± 0.7
30	Plant oil	35	25	47.8 ± 1.4	53.5 ± 1.2
31	Mash	6	6	4.9 ± 0.1	4.1 ± 0.1
32	Beans	6	6	3.4 ± 0.1	4.6 ± 0.1
33	Letter No.	8	8	5.8 ± 0.1	6.3 ± 0.1
34	Salt	5	5	7.7 ± 0.2	6.8 ± 0.1
35	End paste	5	5	5.0 ± 0.02	$4.6 \pm 0.01^{**}$
36	Coffee	2	2	0.7 ± 0.01	1.1 ± 0.01
37	Butter	35	30	38.9 ± 0.5	33.7 ± 0.7
38	Confectionery products	40	40	46.8 ± 2.1	48.1 ± 2.2

Note: * - differences are significant compared to the indicators of the physiological norm group (* - $P < 0.05$, ** - $P < 0.01$, *** - $R < 0.001$)

The dietary consumption of Uzkimyosanoat enterprise workers during the summer-autumn season is fully outlined in Table 2. During this season, the daily supply level of flour and flour products exceeded physiological norms by 35.0% (10.5 g)–42.8% (10.7 g). The consumption of bread and bakery products was 349.5 ± 10.4 g for male workers and 324.7 ± 9.8 g for female workers. Regarding pasta product consumption, male workers exceeded the physiological norm by 12.6 g (22.9%), while female workers exceeded it by 10.8 g (21.6%). The consumption of potatoes in the daily diet was as follows: 291.5 ± 5.2 g (104.1%) for male workers and 272.6 ± 6.1 g (109.0%) for female workers. The consumption of confectionery products exceeded the norm by 6.8 g (117.0%) for men and 8.1 g (120.2%) for women. The supply level of spices in the daily diet was 40% higher for male workers and 50% higher for female workers. The sugar intake was 1.57 times higher than the norm in male workers and 2.43 times higher in female workers. Daily margarine consumption was 12.2 ± 0.4 g (244%) for male workers and 11.7 ± 0.7 g (234%) for female workers, indicating an excessive intake. The daily salt intake was 7.7 ± 0.2 g (154%) for men and 6.8 ± 0.1 g (136%) for women, which exceeded the recommended levels. Regarding milk and dairy products used for preventive purposes, the consumption was 117.4 ± 2.4 g for male workers and 125.3 ± 2.3 g for female workers, while the physiological norm is 400 g. Among dairy products, the intake of cheese and cottage cheese was lower than the recommended levels: cheese supply was 72.5%–64.5%, and cottage cheese supply was 87.6%–92.4%. The supply level of fish and fish products was 35.2 ± 0.7 g for male workers (physiological norm: 40 g) and 30.6 ± 0.9 g for female workers (physiological norm: 35 g).

4. Conclusion

The daily consumption of 38 types of food products by Uzkimyosanoat enterprise workers was analyzed across winter-spring and summer-autumn seasons. The findings indicate: Flour consumption exceeded the norm by 64.3%–82.8% in winter-spring and 35.0%–42.8% in summer-autumn. Bread consumption exceeded the norm by 47.4%–71.9% in winter-spring and

39.8%–47.6% in summer-autumn. Pasta consumption exceeded the norm by 17.7–15.6 g in winter-spring and 12.6–10.8 g in summer-autumn. Confectionery products exceeded the norm by 30.6–27.9 g in winter-spring and 6.8–8.1 g in summer-autumn. Sugar intake was 1.61–2.47 times the norm in winter-spring and 1.57–2.43 times in summer-autumn. Margarine intake was 302%–376% in winter-spring and 244%–234% in summer-autumn. Salt intake exceeded the norm by 4.8–4.1 g in winter-spring and 2.7–1.8 g in summer-autumn. Milk and dairy product supply was significantly low, at 56.3%–55.1% in winter-spring and 29.3%–31.3% in summer-autumn.

5. Recommendations

The findings highlight an excessive intake of certain food products beyond physiological norms, while essential nutrients remain insufficient in the workers' diet. This imbalance can negatively impact rational and healthy nutrition.

In the modern workplace, preventive nutrition plays a crucial role in maintaining and strengthening workers' health and productivity. It not only ensures an adequate supply of essential nutrients but also protects against harmful and hazardous workplace conditions while supporting the body's adaptation processes.

6. Acknowledgments

I extend my sincere gratitude to the Tashkent Medical Academy and the Committee for Sanitary-Epidemiological Well-being and Public Health for their constructive criticism and valuable insights, which significantly enhanced the quality of this research.

7. Conflict of Interest

The authors declare that this research was conducted without any commercial or financial relationships that could be interpreted as a potential conflict of interest.

Data Availability Statement

The original contributions presented in this study are included in the article and supplementary materials. For further inquiries, please contact the corresponding author(s).

REFERENCES

[1]. Jaiswal, A. A. (2012). Study on the Intake and Expenditure of Calories among the Manufacturing Workers. *Human Biology Review, International Peer Reviewed Journal of Biological Anthropology*, 1(2), 151-168. <https://www.humanbiologyjournal.com/>

[2]. Guilherme, R. C., Canuto, R., Clark, S. G. F., Vasconcelos, F. N. D., Padilha, V. M., Tavares, F. C. D. L. P., ... & Lira, P. I. C. D. (2020). Worker's Nutrition: an evaluation in industries in north-eastern Brazil. *Ciência & Saúde Coletiva*, 25, 4013-4020. <https://www.scielo.br/j/csc>

[3]. Mascherini G. et al. Levels of physical activity, nutrition and body composition in the workplace: reports from a distribution company //Annali dell'Istituto Superiore di Sanità. – 2020. – Т. 56. – С. 135-141. <https://flore.unifi.it/bitstream/2158/1184852/2>

[4]. Ermatov N. J. et al. HYGIENIC ANALYSIS OF THE NUTRITIONAL CONDITION OF THE EMPLOYEES OF TEXTILE ENTERPRISE. – 2024. <https://repo.tma.uz/xmlui/bitstream/handle/1/414>

[5]. Ortiqov B. B., Baxtiyorova G. R., Tugilova S. N. ANALYSIS OF THE MAIN RISK GROUP PRODUCTS IN THE DAILY DIET OF TEKSTIL ENTERPRISES'EMPLOYEES. – 2024. <https://repo.tma.uz/xmlui/bitstream/handle/1/411>

[6]. Козлова О. В., Артюхова С. И. БИОТЕХНОЛОГИЯ ПРОИЗВОДСТВА СИНБИОТИЧЕСКОГО МОЛОЧНОГО ПРОДУКТА ДЛЯ ПИТАНИЯ ШАХТЕРОВ //Актуальные направления научных исследований: технологии, качество и безопасность. – 2020. – С. 69-71. [https://doi.org/10.1016/s2589-7500\(24\)00169-9](https://doi.org/10.1016/s2589-7500(24)00169-9)

[7]. Мулина, О. Н., & Дышлюк, Л. С. (2020). НОВЫЙ ФУНКЦИОНАЛЬНЫЙ ПРОДУКТ ПИТАНИЯ ДЛЯ РАБОТНИКОВ УГОЛЬНОЙ ОТРАСЛИ. In Пищевые инновации и биотехнологии (pp. 250-252). <https://portal.issn.org/resource/ISSN/2308-4057>

[8]. Васюкова, А. Т., Славянский, А. А., Бражников, М. Е., & Макаров, М. Г. (2019). Современные подходы к организации питания рабочих промышленных предприятий. In Перспективы развития пищевой и химической промышленности в современных условиях (pp. 35-39).

[9]. Ортиков Б. Б. и др. АНАЛИЗ ВИТАМИНОВ, СОДЕРЖАЩИХСЯ В СУТОЧНОМ РАЦИОНЕ РАБОТНИКОВ ПРОИЗВОДСТВЕННЫХ ПРЕДПРИЯТИЙ //Medical Journal of Uzbekistan. – 2024. – №. 4. – С. 37-42. <https://journals.tnmu.uz/index.php/uzmedjournal/article/view/1004>

[10]. Гумеров, Т. Ю., & Усманова, А. Р. (2021). Разработка функционального продукта для питания лиц, работающих во вредных условиях труда. Пищевые системы, 4(3S), 61-66. https://www.vniimp.ru/netcat_files/928/1173/12.Pischhevye_sistemy_3S_2021_Gumerov.pdf

[11]. Дементьев, С. Ю., & Антонова, Е. А. (2019). АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВА В ЦЕЛЯХ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ ПЕРСОНАЛА. Актуальные проблемы авиации и космонавтики, 2, 544-546. <https://cyberleninka.ru/article/n/avtomatizatsiya-proizvodstva-v-celyakh-povysheniya-bezopasnosti-personala>

[12]. Дуйшембиева, Э. А. (2015). Снижение влияния вредных факторов на здоровье человека в текстильной и легкой промышленности. Известия Кыргызского государственного технического университета им. И. Раззакова, (3), 280-283. <https://doi.org/10.1038/nri.2016.90>

[13]. Егорова, А. М., Луценко, Л. А., & Татянюк, Т. К. (2021). Гигиенические факторы риска здоровью работников при получении железорудных окатышей. Здоровье населения и среда обитания, (8), 15-20. <https://cyberleninka.ru/article/n/gigienicheskie-faktory-riska-zdorovyu-rabotnikov-pri-poluchenii-zhelezorudnyh-okatyshey>

[14]. Есина, А. И., Галкина, Н. Л., Пюрвеев, С. С., & Некрасов, М. С. (2019). Влияние химических и физических факторов на условия труда и состояние здоровья работников. Forcipe, (Приложение), 330-331. <https://cyberleninka.ru/article/n/vliyanie-himicheskikh-i-fizicheskikh-faktorov-na-usloviya-truda-i-sostoyanie-zdorovya-rabotnikov>

[15]. Ефремова, Л. А. (2018). РЕЗУЛЬТАТИВНОСТЬ МЕР ПО СОХРАНЕНИЮ И УКРЕПЛЕНИЮ ЗДОРОВЬЯ РАБОТНИКОВ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ (НА ПРИМЕРЕ РУППП "ОРШАНСКИЙ ЛЬНОКОМБИНАТ"). In Достижения фундаментальной, клинической медицины и фармации (pp. 681-683).

[16]. Барбашов, А. В., Солод, С. А., & Овчинникова, Е. И. (2017). Проблема организации питания работников организаций, как фактор трудоспособности и травмобезопасного поведения на рабочих местах. Электронный сетевой политехнический журнал "Научные труды КубГТУ", (7), 400-407. <https://ntk.kubstu.ru/data/mc/0044/1905.pdf>

[17]. Игнатенко, Г. А., Ластков, Д. О., Выхованец, Т. А., Выхованец, Ю. Г., Машинистов, В. В., Павлович, Л. В., & Коханный, А. Ю. (2019). О целесообразности использования продуктов, обогащенных пектином, в лечебно-профилактическом питании на промышленных предприятиях Донецкого региона. Вестник гигиены и эпидемиологии, 23(3), 285-290.

[18]. ЖАРКИНБЕКОВА, А., & АБДУЛДАЕВА, А. (2022). ОБЗОР ЛИТЕРАТУЫ О СОСТОЯНИИ

ПИТАНИЯ РАБОТНИКОВ УГЛЕДОБЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ. Валеология: Здоровье, Болезнь, Выздоровление, (4), 176-181. <https://doi.org/10.1093/annweh/wxaa044>

[19]. Григус, О. Н., & Дишлюк, Л. С. (2021). ФУНКЦИОНАЛЬНЫЕ ПРОДУКТЫ В РАЦИОНЕ ПИТАНИЯ РАБОТНИКОВ УГОЛЬНОЙ ОТРАСЛИ. In ПИЩЕВЫЕ ИННОВАЦИИ И БИОТЕХНОЛОГИИ (pp. 404-405). <https://doi.org/10.1093/occmed/kqaa052>

[20]. Черногузова, Д. С., Журавлева, Д. А., & Селезнева, И. С. (2023). РАЗРАБОТКА ФУНКЦИОНАЛЬНОГО ПРОДУКТА ДЛЯ ПРОФИЛАКТИЧЕСКОГО ПИТАНИЯ ШАХТЕРОВ. Физика. Технологии. Инновации. Тезисы докладов (ФТИ-2023), 842-843.. <https://elar.urfu.ru/handle/10995/123773>