A review on: Biodiversity and Ecological Significance of Wild Legumes in the Western Ghats

Landage K. B.¹, Nikam T. D.² and Naikawadi V. B.^{1*}

1. Post Graduate Research Centre, Department of Botany, Chandmal Tarachand Bora College, Shirur, Pune- 412 210.

20(3): 1995-2008,2025

2. Department of Botany, Savitribai Phule Pune University, Pune- 411 005

E-mail: kiranlandage1991@gmail.com

DOI: 10.63001/tbs.2025.v20.i03.pp1995-2007

KEYWORDS

Wild legumes,Fabaceae,W estern Ghats, Nitrogen fixation,Ethnobotany, Conservation

Received on:

30-04-2025

Accepted on:

05-05-2025

Published on:

29-07-2025

Abstract

This review summarizes the diversity, ecological roles, ethnobotanical relevance, conservation status, and microbiological associations of wild legume (Fabaceae) species in the Western Ghats, one of the world's most important biodiversity hotspots. Wild legumes contribute significantly to ecosystem functioning through nitrogen fixation, soil fertility enhancement, carbon sequestration, and habitat stabilization. Many species hold traditional medicinal, nutritional, and cultural value among local and Indigenous communities, reflecting their ethnobotanical importance. The review also highlights the symbiotic interactions of these legumes with rhizobia and non-rhizobial endophytes, emphasizing their potential in sustainable agriculture, biofertilizer development, and ecosystem restoration. Emerging biotechnological approaches including microbial inoculant formulation, phytochemical exploration, and genetic characterization offer new opportunities to harness the functional diversity of these species. Despite their ecological and economic importance, numerous wild legumes face threats from habitat loss, overharvesting, and climate change, underscoring the need for targeted conservation strategies. This review integrates current research to provide a comprehensive understanding of wild legume resources in the Western Ghats and proposes future directions for conservation, sustainable utilization, and biotechnological innovation.

Introduction

The Western Ghats (Sahyadri Range) is recognized as one of the world's foremost biodiversity hotspots, characterized by exceptional species richness, high levels of endemism, and a variety of ecosystems spanning from lowland plains to montane

shola-grasslands (Binoy, 2022). The family Fabaceae (Leguminosae) is particularly well represented in this region, with wild legume species distributed across diverse forest types, including evergreen forests, riparian zones, scrublands, and higher-elevation montane habitats (Jabeena et al., 2023). Wild legumes

in the Western Ghats play vital ecological roles. Through symbiotic or associative relationships with nitrogen-fixing bacteria, they contribute significantly to biological nitrogen fixation, thereby improving soil fertility and supporting nutrient cycling in otherwise nutrient-poor tropical soils (Thamizhseran & Shendye, 2023). Wild legumes in the Western Ghats play vital symbiotic ecological roles. Through relationships with nitrogen-fixing bacteria, they contribute significantly to biological nitrogen fixation, thereby improving soil fertility, supporting nutrient cycling, and enhancing carbon sequestration, while also being embedded in the ethnobotanical knowledge of local communities (Aswani et al., 2024). In addition to their ecological importance, these wild legumes harbor rich microbiological associations. Studies have shown that plants in the Western Ghats host diverse endophytic bacteria, including rhizobia and non-rhizobial endophytes, many of which have specialized metabolic capabilities. For example, a culture-based survey isolated 75 bacterial endophytes from 24 plant species in the Western Ghats, revealing potential for antimicrobial metabolite production (Gossain et al., 2020). These microbial populations are promising for biotechnological exploitation, such as the development of biofertilizers, plant-growth promoters, and novel bioactive compounds (Webster et al., 2020). Despite their functional versatility, wild legume species in the Western Ghats face increasing threats. Habitat fragmentation, overharvesting for traditional uses, and climate change pose serious risks their populations. Ethnobotanical studies continue to document traditional uses among local communities (Karthik et al., 2025).

Conservation of these species is further underscored by recent taxonomic work, such as the reinstatement of *Alysicarpus monilifer* var. *venosa* (Fabaceae), which includes an updated IUCN Red List assessment (Purohit & Meena, 2025).

Given their ecological, cultural, and biotechnological importance, wild legumes of the Western Ghats warrant a comprehensive review. This article synthesizes current literature on their diversity, microbiological associations, traditional uses, and conservation status, and proposes future directions for research, sustainable use, and preservation.

2. Study Area

The Western Ghats, a UNESCO World Heritage Site along India's western coast, are a global biodiversity hotspot. With varied topography and a tropical monsoon climate,

the region supports diverse ecosystems that harbor numerous wild legume species. These legumes contribute to soil fertility through nitrogen fixation and play key ecological roles in vegetation recovery and habitat support.

Map showing green patch of wild legumes Plant from Western ghats

3. Biodiversity of Wild Legumes in the Western Ghats

The Western Ghats support an exceptionally rich diversity of wild legumes, with hundreds of taxa distributed across diverse ecological zones. Major genera represented in the region include Desmodium, Crotalaria, Indigofera, Vigna, Dalbergia, Mucuna, and Pongamia, of which display ecological many specialization and high levels of local endemism (Wagh & Patil, 2023; Aitawade & Yadav, 2022; Balan, 2021). Several species of Crotalaria, Indigofera, and Desmodium are known only from narrow altitudinal belts and microhabitats, unique such lateritic as mosaics, plateaus, shola-grassland and riparian forest edges (Lekhak, M. M. & Yadav, S. R. 2012)

State-level floristic accounts, particularly for

Kerala and Karnataka, have highlighted the exceptional richness of the Fabaceae family in the southern Western Ghats. The "Checklist of Legumes of Kerala" provides one of the most comprehensive regional inventories, documenting numerous endemics, rare, and threatened species and emphasizing the conservation significance of these taxa (Balan, 2021). Additional regional floras and botanical surveys across Maharashtra, Goa, and Tamil Nadu also report a high number of members, illustrating Fabaceae widespread distribution of legumes from lowland deciduous forests to montane evergreen formations (Rather et al., 2018; Flora of Goa, Botanical Survey of India 2013; Kottaimuthu, 2019). The genus Crotalaria alone exhibits remarkable diversification in the Western Ghats, with new species still

being described, indicating that the legume flora remains incompletely explored. For instance, two new *Crotalaria* species were recently reported from the central Western Ghats, and later another new species *C. shrirangiana* was described from the northern Western Ghats (Rather et al., 2018; Rokade et al., 2020). Similarly, wild *Vigna* species including *Vigna vexillata*, *Vigna trilobata*, and several wild relatives of cultivated pulses are frequent in forest margins, grasslands, and open scrublands, and serve as valuable genetic resources for crop improvement (Gita Kumari et al., 2022).

"Legume diversity in the Western Ghats is also strongly linked to ecological function. Species such as Pongamia pinnata, Mucuna pruriens, and Dalbergia latifolia are keystone components of forest ecosystems, contributing to soil fertility, stabilizing slopes, and forming critical habitat for wildlife. Endemic tree legumes such as Humboldtia bourdillonii and Humboldtia vahliana are restricted to the southern Western Ghats and are listed as threatened due to habitat fragmentation and limited distribution ranges (Balan, Predeep & Udayan, 2016)." "Overall, the floristic richness and high endemism of Fabaceae in the Western Ghats underscore the need for updated taxonomic assessments, molecular phylogenetic studies, and long-term ecological monitoring to better understand the distribution, evolution, and conservation requirements of these important plant groups (Rather et al., 2024)."The Western Ghats are recognized as one of the world's eight "hottest" biodiversity hotspots and harbor exceptionally rich legume diversity. The family Fabaceae is represented by over 350 wild species distributed across diverse habitats ranging from montane forests and semi-evergreen tracts to lateritic plateaus and scrublands (Sreekumari et al., 2025).

"A significant proportion of these taxa are endemic or narrowly distributed, especially Crotalaria, Indigofera, Vigna, and Mucuna, which display strong habitat specialization on lateritic outcrops and shola-grassland mosaics (Lekhak & Yadav, 2012)." "Several species, such as Vigna vexillata var. dalzelliana, *Indigofera barberi*, and *Mucuna pruriens* var. hirsuta, are considered rare or threatened due to habitat fragmentation and anthropogenic pressures (Chadburn, 2012; Koza et al., 2025)." "Ecologically, wild legumes contribute to soil fertility through nitrogen fixation, support pollinator networks, and act as keystone species in forest ecosystems. Several taxa also exhibit remarkable adaptive traits, such as drought tolerance in Mucuna pruriens (Saleem et al., 2018), shade tolerance in Desmodium heterocarpon (Jia et

al., 2022), and salinity resistance in salttolerant legumes including *Alysicarpus* (Bouzroud et al., 2023). From an ethnobotanical perspective, wild legumes serve as sources of traditional medicine, fodder, fiber, gums, dyes, and minor food crops, highlighting their socio-economic value (Abdussalam., 2021)

Overall, the wild Fabaceae of the Western Ghats represent a genetically rich reservoir for crop improvement, especially for traits such as stress resistance, high protein content, and enhanced symbiotic efficiency making them crucial for future legume breeding programs and ecological restoration efforts (Jha, Nayyar & Siddique, 2024).

4. Ecological Role of wild legume plants

Wild legumes play a fundamental ecological role in Western Ghats ecosystems. Their ability to perform biological nitrogen fixation (BNF) through symbiotic associations with rhizobia significantly enhances soil nitrogen pools, improves nutrient cycling, and supports long-term soil fertility in nutrient-poor tropical environments (Kawaka, 2022). Many herbaceous legumes (*Desmodium, Indigofera, Crotalaria*) act as pioneer species during early successional stages, colonizing disturbed sites, stabilizing soil, and promoting vegetation recovery (Hernández, et al., 2020). Legume flowers also support a wide array of

pollinators, including bees, butterflies, and beetles, while their seeds and foliage serve as food for herbivores and frugivores (Camurça, et al., 2020). Their capacity to increase soil organic matter and nitrogen levels makes them crucial components of forest regeneration and restoration programs across the Western Ghats (Sardar, M. F. et al., 2023).

5. Ethnobotanical and Medicinal Importance of wild legume plants

Wild legumes have deep ethnobotanical relevance among tribal and rural communities in the Western Ghats. Numerous species are integral to traditional medicine, food systems, and cultural practices. Abrus precatorius is widely used for treating fevers, skin ailments, and inflammation (Dhole and Surwase., 2024). Mucuna pruriens, a species native to the region, is a natural source of L-DOPA, used in Parkinson's disease treatment (Hammoud, et al., 2025). Canavalia species, such as C.gladiata and C.ensiformis, have historically served as famine foods, green manure, and livestock fodder (Indriani et al., 2024; Heuzé and Tran 2025). Ethnobotanical surveys across the North-Central and Southern Western Ghats consistently document diverse medicinal preparations, dietary uses, and cultural significance associated with Fabaceae species. Such knowledge also highlights the need for conservation of traditional medicinal

flora (Hurkadale & Bidikar, 2023; Kullampady & Nekrakalaya, 2025).

6. Conservation Status and Threats of wild legume plants

"Despite their importance, many wild legume species in the Western Ghats face significant conservation challenges. Habitat loss due to agricultural expansion, road construction, and urbanization remains a primary threat (Karnataka State Western Ghats Conservation Task-Force, 2024: Alex. 2024)."Overharvesting of medicinal species like Abrus precatorius and Mucuna pruriens reduces further natural populations (Raghavendra, et al., 2011; Ahmad, et al., 2011). Forest fragmentation, invasive species encroachment (e.g., Lantana camara, Senna spectabilis), and climate change contribute to declining distribution and genetic erosion in several endemic taxa (NR Anoop, et al., 2022; Bhattacharya, 2025). Regional assessments categorize many Fabaceae members Endangered, Vulnerable, or Near Threatened, including endemic tree legumes such as Humboldtia bourdillonii and H. vahliana (Ramachandran, et al., 2014; Jose, 2025). Conservation strategies recommended include in situ protection through reserve forests and wildlife sanctuaries, ex situ seed banking, and habitat restoration programs involving native legume species. (Katwal, et al., 2004)

7. Root Nodule Microbiome and Non-Rhizobial Endophytes of wild legume plants

20(3): 1995-2008,2025

Root nodules of wild legumes in the Western diverse highly Ghats host bacterial microbiomes composed of both classical rhizobia (e.g., Rhizobium, Bradyrhizobium, Mesorhizobium) and a wide range of nonrhizobial endophytes (NREs) (Hnini, et al., 2025). Studies isolating nodule-associated bacteria from genera such as Desmodium, Vigna, and Crotalaria have identified beneficial **NREs** including Bacillus. Pseudomonas, Enterobacter, Serratia, and Klebsiella (Raja et al., 2019). These microorganisms contribute to plant growth promotion, phosphate solubilization, indole acetic acid (IAA) production, siderophore release, and enhanced tolerance to drought and metal stress (Youseif, et al., 2025). Comparative microbiome profiling of wild legumes indicates significant variation in community composition between species and across altitudinal gradients (Pang et al., 2021).

8. Biotechnological Applications of wild legume plants

The functional diversity of wild legumes and their microbial symbionts hold considerable promise for biotechnological exploitation. Region-specific rhizobial and endophytic

isolates are increasingly being evaluated for biofertilizer development, particularly enhancing nutrient-use efficiency in sustainable agriculture systems (Ben Gaied, et 2024). Several legumes (Mucuna, Desmodium, Crotalaria) exhibit traits suitable for phytoremediation, including tolerance to heavy metals and the ability to accumulate or stabilize contaminants in degraded soils (Silva et al., 2021). Wild relatives of food legumes, including Vigna and Canavalia species, are valuable reservoirs of genetic traits such as

drought tolerance, pest resistance, and high nutritional content, which can be harnessed through breeding and molecular approaches for crop improvement programs (Henry, phytochemicals 2023). Exploring from species like Mucuna pruriens and Abrus precatorius also opens pathways for drug discovery and therapeutic applications(BM, et al.,2024). Collectively, these attributes position wild legumes as ideal candidates for ecological restoration, climate-resilient agriculture, and industrial bioproducts.

Table No. 1 Wild legume From Western ghats

	l able No. 1 Wild legume From Western ghats								
Sr	Scientific	Genus	Habit	Typical	Distribution	Importance			
•	Name			Habitat	Status				
No									
•									
1	Crotalaria	Crotalaria	Herb	Lateritic	Endemic	Newly			
	shrirangiana			plateaus		described			
						(NW Ghats)			
2	Crotalaria	Crotalaria	Herb	Grasslands	Regional	Pollinator			
	concanensis					plant			
3	Crotalaria	Crotalaria	Shrub	Shola-	Endemic	Rare			
	lawii			grassland					
4	Crotalaria	Crotalaria	Herb	Hill slopes	Endemic	High			
	montana					elevation			
						species			
5	Crotalaria	Crotalaria	Herb	Open	Widespread	Medicinal			
	retusa			scrub					
6	Crotalaria	Crotalaria	Herb	Coastal	Widespread	Ornamental			
	verrucosa			plains					
7	Indigofera	Indigofera	Shrub	Rocky	Rare	Threatened			
	barberi			slopes					
8	Indigofera	Indigofera	Shrub	Forest	Widespread	Dye (indigo)			
	tinctoria			edges					
9	Indigofera	Indigofera	Herb	Woodland	Widespread	Useful fodder			
	trifoliata			margins	_				
10	Indigofera	Indigofera	Shrub	Montane	Regional	Nitrogen-			
	cassioides			forests		fixing			
11	Indigofera	Indigofera	Herb	Scrubland	Regional	Medicinal			

20(3): 1995-2008,2025 <u>www.thebioscan.com</u>

	arrecta			S		
12	Vigna trilobata	Vigna	Herb	Grasslands	Widespread	Drought- tolerant
13	Vigna vexillata var. dalzelliana	Vigna	Climber	Forest margins	Rare	Wild relative
14	Vigna radiata var. sublobata	Vigna	Herb	Open scrub	Regional	Progenitor of mungbean
15	Vigna angustifolia	Vigna	Herb	Sandy soils	Regional	Stress- tolerant
16	Vigna unguiculata ssp. stenophylla	Vigna	Herb	Dry areas	Wild relative	Heat tolerance
17	Mucuna pruriens var. hirsuta	Mucuna	Climber	Moist forests	Rare	L-DOPA source
18	Mucuna monosperma	Mucuna	Climber	Evergreen forests	Regional	Ethnobotanic al
19	Mucuna gigantea	Mucuna	Climber	Coast, evergreen	Regional	Nitrogen- fixer
20	Desmodium heterocarpon	Desmodium	Herb	Forest shade	Widespread	Shade- tolerant
21	Desmodium triflorum	Desmodium	Herb	Grasslands	Widespread	Fodder
22	Desmodium gangeticum	Desmodium	Shrub	Deciduous forests	Widespread	Ayurvedic drug
23	Desmodium pulchellum	Desmodium	Herb	Moist forests	Regional	Soil enrichment
24	Alysicarpus vaginalis	Alysicarpus	Herb	Grasslands	Widespread	Salinity- tolerant
25	Alysicarpus monilifer	Alysicarpus	Herb	Lateritic soils	Regional	Fodder
26	Dalbergia latifolia	Dalbergia	Tree	Moist deciduous	Regional	Timber; keystone
27	Dalbergia lanceolaria	Dalbergia	Tree	Dry deciduous	Regional	Soil binder
28	Pongamia pinnata	Pongamia	Tree	Riparian zones	Widespread	Biodiesel tree
29	Humboldtia bourdillonii	Humboldtia	Tree	Evergreen forests	Endemic	Threatened
30	Humboldtia vahliana	Humboldtia	Tree	Evergreen forests	Endemic	Conservation priority
31	Abrus precatorius	Abrus	Climber	Forest edges	Common	Medicinal; toxic seeds

20(3): 1995-2008,2025 <u>www.thebioscan.com</u>

32	Canavalia	Canavalia	Climber	Coastal	Regional	Salt-tolerant
	cathartica			forests		
33	Canavalia	Canavalia	Climber	Scrubland	Widespread	Green
	ensiformis			S	_	manure
34	Canavalia	Canavalia	Climber	Sand	Coastal	Stabilizes
	rosea			dunes		dunes
35	Atylosia	Vigna	Herb	Lateritic	Regional	Wild Cajanus
	scarabaeoides			soils		relative
	(Vigna					
	scarabaeoide)					
36	Clitoria	Clitoria	Climber	Open	Widespread	Medicinal;
	ternatea			woodlands	_	ornamental
37	Clitoria	Clitoria	Climber	Moist	Regional	Rare
	laurifolia			forests		
38	Flemingia	Flemingia	Shrub	Evergreen	Regional	Agroforestry
	strobilifera			margins		species
39	Flemingia	Flemingia	Shrub	Moist	Regional	Soil
	macrophylla			forests		improvement
40	Smithia	Smithia	Herb	Lateritic	Endemic	Seasonal
	sensitiva			plateaus		wetland
						indicator
41	Smithia	Smithia	Herb	Grasslands	Regional	Monsoon
	hirsuta					herb
42	Pueraria	Pueraria	Climber	Deciduous	Regional	Edible tubers
	tuberosa			forests	_	
43	Pueraria	Pueraria	Climber	Moist	Regional	Erosion
	montana			deciduous		control
44	Tephrosia	Tephrosia	Herb	Dry scrub	Widespread	Medicinal
	purpurea					
45	Tephrosia	Tephrosia	Herb	Lateritic	Regional	Dye plant
	tinctoria			soil		
46	Tephrosia	Tephrosia	Herb	Open	Widespread	Fodder
	villosa			grasslands		
47	Butea	Butea	Tree	Dry	Regional	"Flame of
	monosperma			deciduous		forest"
48	Peltophorum	Peltophorum	Tree	Coastal &	Regional	Avenue tree
	pterocarpum			plains		
49	Sesbania	Sesbania	Herb/Shr	Wetlands	Widespread	Green
	bispinosa		ub			manure
50	Sesbania	Sesbania	Tree	Village	Widespread	Edible
	grandiflora			groves		flowers
51	Cassia fistula	Senna	Tree	Dry	Widespread	Medicinal
				deciduous		
52	Senna tora	Senna	Herb	Scrubland	Widespread	Seeds used
				S		medicinally

53	Senna	Senna	Herb	Wasteland	Common	Common
	occidentalis			S		weed
54	Bauhinia	Bauhinia	Tree	Dry	Regional	Leaf used as
	racemosa			forests		plate material
55	Bauhinia	Bauhinia	Tree	Forest	Regional	Ornamental
	purpurea			margins		
56	Bauhinia	Bauhinia	Climber	Evergreen	Rare	High
	phoenicea			forests		conservation
	16.11	2 5 111	_	_	D	value
57	Millettia	Millettia	Tree	Evergreen	Regional	Ornamental
50	peguensis	3.6'11'	G1: 1	margins	D : 1	D 11
58	Millettia	Millettia	Climber	Montane	Regional	Fodder
50	extensa	A 1 41	Т	forests	D : 1	D - 1 1
59	Adenanthera	Adenanthera	Tree	Evergreen forests	Regional	Red seeds; medicinal
60	pavonina Acacia	Acacia	Tree	Moist	Introduced/	Plantation
00	auriculiformis	Acacia	1166	deciduous	Naturalized	species
61	Acacia	Acacia	Tree	Dry	Regional	Catechu
01	catechu	Acacia	1100	deciduous	Regional	extraction
62	Acacia	Acacia	Climber	Evergreen	Endemic	Soap pod
02	sinuata	1100010	Cinnoci	forests	Lindelline	Soup pou
63	Albizia	Albizia	Tree	Plains, dry	Widespread	Timber,
	lebbeck			forests	1	shade
64	Albizia amara	Albizia	Tree	Dry rocky	Regional	Soil binder
				hills		
65	Derris	Derris	Climber	Mangrove	Regional	Fish poison
	trifoliata			S		plant
66	Erythrina	Erythrina	Tree	Coastal &	Regional	Coral tree
	variegata			plains		
67	Erythrina	Erythrina	Tree	Moist	Regional	Ornamental
	stricta			forests		
68	Oxyrhynchus	Oxyrhynchus	Climber	Evergreen	Rare	Little studied
	oxyphyllus			forests		
69	Uraria picta	Uraria	Herb	Deciduous	Widespread	Ayurvedic
				forests		(Dasha
70		T	77 1		D : 1	Moola)
70	Uraria	Uraria	Herb	Grasslands	Regional	Soil
	lagopoides					improving

9. Conclusion

Wild legumes of the Western Ghats represent an invaluable ecological, genetic, and socioeconomic resource. Their remarkable diversity, high levels of endemism, and specialized adaptations play a crucial role in maintaining soil fertility, stabilizing ecosystems, and supporting pollinator and

Beyond herbivore communities. their ecological significance, these wild species and their associated root nodule microbiomes including nitrogen-fixing Rhizobium and non-rhizobial diverse endophytes hold immense potential for sustainable agriculture, particularly in the development biofertilizers, stress-resilient crop varieties,

and low-input farming systems.

Moreover, wild legume genetic resources offer novel traits such as drought tolerance, disease resistance, high nitrogen-use efficiency, and unique secondary metabolites that can be harnessed through advanced breeding, genomics, and biotechnological interventions. Their role in restoration ecology is equally significant, as many species are pioneer colonizers capable of rehabilitating degraded landscapes, improving soil organic matter, and facilitating succession. However, increasing habitat loss, climate change, land-use transformation, and limited taxonomic exploration pose serious threats to these valuable resources. Thus, concerted and multidisciplinary efforts integrating taxonomy, ecology, microbiome research, conservation biology, and local community participation are urgently required. Strengthening in situ and situ conservation strategies, ex developing region-specific germplasm repositories, and promoting awareness about

the ecological services of wild legumes are essential steps toward sustainable utilization.

In summary, the wild legumes of the Western Ghats together with their diverse microbial symbionts constitute a strategic biodiversity asset. Protecting and effectively harnessing this resource will contribute significantly to climate-resilient agriculture, environmental sustainability, and future biotechnological innovations.

10.References

20(3): 1995-2008,2025

Abdussalam, A. K. (2021). Determination of use value and informant consensus factor on ethnobotanic knowledge about wild legumes used by natives of Wayanad district, Kerala. *Indian Journal of Traditional Knowledge (IJTK)*, 20(2), 404-415.

Ahmad, J., Malik, A. A., & Shakya, L. (2013). Urban development: a threat to wild species of medicinal and aromatic plants. *Middle-East Journal of Scientific Research*, 13(7), 947-951. Aitawade, M.M., Yadav, S.R. (2012). *Mucuna sanjappae*, a new species from the north-Western Ghats, India. *Kew Bull* 67, 539–543 https://doi.org/10.1007/s12225-012-9369-1

Alex, J. K., & TA, A. (2024). Western Ghats Dilemma: Conservation Vs Livelihood. Ecology, Environment & Conservation (0971765X), 30.

Anoop, N. R., Sen, S., Vinayan, P. A., & Ganesh, T. (2022). Native mammals disperse the highly invasive Senna spectabilis in the Western Ghats, India. *Biotropica*, 54(6), 1310-1314

Aswani, M.A., Khyade, M., Kasote, D.M. *et al.* (2024). Wild edible plants from western peninsular and Deccan Plateau regions of India: valued nutritional and functional foods. *Discov. Plants* 1, 62. https://doi.org/10.1007/s44372-024-00060-9

Balan, A. P., Predeep, S. V., & Udayan, P. S. (2016). Ecology and distribution of the genus Humboldtia Vahl (Leguminosae) in India. *International Journal of Plant, Animal and Environmental Sciences*, 6, 87-94.

Balan.A.P. & S.V. Predeep (2021). Legumes of Kerala, India: a checklist. *Journal of Threatened Taxa* 13(5): 18257–18282. DOI: 10.11609/jott.6475.13.5.18257-18282

Ben Gaied, R., Sbissi, I., Tarhouni, M., & Brígido, C. (2024). Bacterial Endophytes from Legumes Native to Arid Environments Are Promising Tools to Improve Mesorhizobium—Chickpea Symbiosis under Salinity. *Biology*, 13(2), 96. https://doi.org/10.3390/biology13020096

Bhattacharya, P. (2025). Forest biodiversity conservation. In *Textbook of Forest Science* (pp. 123-142). Singapore: Springer Nature Singapore.

Binoy, C., Nasser, M., & Santhosh, S. (2022). The Western Ghats, a biodiversity hotspot: the example of *Chalcididae* (Hymenoptera) with the description of a new species of *Phasgonophora* Westwood and a review of the regional species. *Journal of Natural History*, 56(41–44), 1627–1655. https://doi.org/10.1080/00222933.2022.21340

Bm, J., Revanasiddappa, B., & Ghate, S. D. (2024). Investigating Multitarget Potential of Mucuna Pruriens Against Parkinson's Disease: Insights from Molecular Docking, Mmgbsa, Pharmacophore Modelling, Md Simulations and Admet Analysis. *Int J App Pharm*, 16(5), 176-193.

Bouzroud, S., Henkrar, F., Fahr, M., & Smouni, A. (2023). Salt stress responses and alleviation strategies in legumes: a review of the current knowledge. *3 Biotech*, *13*(8), 287. https://doi.org/10.1007/s13205-023-03643-7b Camurça, L. M., Santos, A. M. M., Castro, C. C., & Leite, A. V. (2024). Trophic interactions between plants, pollinators, florivores and predators: a global systematic

review. Biological Journal of the Linnean Society, 141(2), 214-222.

Chadburn, H. (2012). *Vigna dalzelliana*. The IUCN Red List of Threatened Species e.T19892280A20163346.

Chand Jha, U., Nayyar, H., Dev Sharma, K., Bishop von Wettberg, E.J., & H. M. Siddique, K. (Eds.). (2024). Legume Crop Wild Relatives: Their Role in Improving Climate Resilient Legumes (1st ed.). *CRC Press*. https://doi.org/10.1201/9781003434535

Datar, M. N. & Lakshminarasimhan, P. (2013). Flora of Bhagwan Mahavir (Molem) National Park and Adjoinings, Goa. Botanical Survey of India, Kolkata.

Dole, N. A., & BS, S. (2024). Pharmacological Properties of *Abrus precatorius* (L.) from Fabaceae family.

Gordon Webster, Alex J Mullins, Edward Cunningham-Oakes, Renganathan, Arun Bai Aswathanarayan, Eshwar Jamuna Mahenthiralingam, Ravishankar Rai Vittal, (2020). Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India, *FEMS* Microbiology Ecology, Volume 96, Issue 9, fiaa147, https://doi.org/10.1093/femsec/fiaa14

Hammoud, F., Ismail, A., Zaher, R., El Majzoub, R., & Abou-Abbas, L. (2025). *Mucuna pruriens* Treatment for Parkinson Disease: A Systematic Review of Clinical Trials. *Parkinson's disease*, 2025, 1319419.

https://doi.org/10.1155/padi/1319419

Henry, R. J. (2023). Genomic characterization supporting the development of new food and crop options from the Australian flora.

Sustainable Food Technology, 1(3), 337-347. Hernández, I., Estévez, S. L., Peña, M. D., & Nápoles, M. C. (2020). Selection of promising rhizobia to inoculate herbaceous legumes in saline soils. *Cuban Journal of Agricultural Science*, 54(3), 435-450.

Heuzé V., and Tran G., (2015). *Jack bean* (Canavalia ensiformis). Feedipedia, a

programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/327 Hnini M and Aurag J (2024) Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. *Front. Microbiol.* 15:1386742.

Hurkadale, P. J., & Bidikar, C. M. (2023). Ethno-Medicinal Plants from the North-Central Western Ghats of India for Alternative Health Care. *Journal of Plant Science and Phytopathology*, 7(2), 076–080. https://doi.org/10.29328/journal.jpsp.1001109 Indriani, N. P., Yuwariah, Y., Ayuningsih, B., Islami, R. Z., Susilawati, I., & Khairani, L. (2024). Forage Quality of Sword Bean (*Canavalia gladiata*) Leaves as Influenced by Harvest Stage. *Indian Journal of Agricultural Research*, 58(6).

Jabeena, M. K., Prabhukumar, K. M., Maya, C. N., & Sunil, C. N. (2023).Revisiting the taxonomy of *Crotalaria priestleyoides* (Fabaceae: Papilionoideae), an endemic legume of Western Ghats . *Phytotaxa*, 594(2), 153–157. https://doi.org/10.11646/phytotaxa.594.2.7

Jia P, Wang J, Liang H, Wu Z-h, Li F and Li W (2022). Replacement control of *Mikania micrantha* in orchards and its ecophysiological mechanism. *Front. Ecol. Evol.* 10:1095946. doi:10.3389/fevo.2022.1095946 Jose, J. K. (2025). Extinction alarm for trees. *Ambio*, 1-4.

Karnataka State Western Ghats Conservation Task-Force. (2024). Deforestation-and-habitat-loss in the Western Ghats

Karthik H N, Mahaboob Basha, Chetan Bhanu Rathod, Akshata Hegde & Arvind B Rathod. (2025). Traditional Knowledge and Ethnobotany of Wild Plants from the Central Western Ghats, Karnataka, India. *Archives of Current Research International*, 25(3), 102–116.

https://doi.org/10.9734/acri/2025/v25i31100 Katwal, R. P. S., Srivastava, R. K., Kumar, S., & Jeeva, V. (2004). Status of forest genetic resources conservation and management in India. In Forest Genetic Resources Conservation and Management: Proceedings of the Asia Pacific Forest Genetic Resources Programme (APFORGEN) Inception Workshop, Kepong, Kuala Lumpur, Malaysia, 15-18 July, 2003 (p. 49). Bioversity International.

Kawaka, F. (2022) Characterization of symbiotic and nitrogen fixing bacteria. *AMB Expr* **12**, 99 . https://doi.org/10.1186/s13568-022-01441-7

KJ, S. (2025). Ethnobotany to bioprospecting of medicinal plants from Western Ghats, India–A review. Indian Journal of Traditional Knowledge (IJTK), 24(1), 63-72. https://doi.org/10.56042/ijtk.v24i1.16335

Kottaimuthu, R., Jothi Basu. M., & Karmegam, N. (2019).Some new combinations and new names for Flora of India. International Journal of Current Research in **Biosciences** Plant and Biology, 6(10), 33-46.

Koza, V. O., Yam, G., & Pegu, J. (2025). Mucuna interrupta Gagnep. (Magnoliopsida: Fabaceae): a new plant record for Nagaland, India. *Journal of Threatened Taxa*, 17(7), 27295-27299.

Kumari, G., Shanmugavadivel, P. S., Lavanya, G. R., Tiwari, P., Singh, D., Gore, P. G., ... & Pratap, A. (2022). Association mapping for important agronomic traits in wild and cultivated Vigna species using cross-species and cross-genera simple sequence repeat markers. *Frontiers in genetics*, *13*, 1000440. https://doi.org/10.3389/fgene.2022.1000440

Lekhak M.M. & S.R. Yadav (2012).Herbaceous vegetation of threatened high altitude lateritic plateau ecosystems of Western Ghats, southwestern Maharashtra, India. *Rheedea* 22(1): 39-61.https://dx.doi.org/10.22244/rheedea.2012.2 2.01.12

Lekhak, M. M., & Yadav, S. R. (2012). Herbaceous vegetation of threatened high altitude lateritic plateau ecosystems of

Western Ghats, southwestern Maharashtra, India. *Rheedea*, 22(1), 39-61.

Pang, J., Palmer, M., Sun, H. J., Seymour, C. O., Zhang, L., Hedlund, B. P., & Zeng, F. (2021). Diversity of Root Nodule-Associated Bacteria of Diverse Legumes Along an Elevation Gradient in the Kunlun Mountains, China. *Frontiers in microbiology*, 12, 633141. https://doi.org/10.3389/fmicb.2021.633141

Purohit CS, Meena SL. (2025).Reinstatement of the name *Alysicarpus monilifer var. venosa* (Fabaceae) and their IUCN Red List Assessment. *Species* 26: https://doi.org/10.54905/disssi.v26i77.e18s31 01

Raghavendra, S., Kumar, V., Ramesh, C. K., & Khan, M. H. M. (2011). Enhanced production of L-DOPA in cell cultures of Mucuna pruriens L. and *Mucuna prurita* H. Natural Product Research, 26(9), 792–801. https://doi.org/10.1080/14786419.2011.55372

Raja, S. R. T., & Uthandi, S. (2019). Non-rhizobial nodule associated bacteria (NAB) from blackgram (Vigna mungo L.) and their possible role in plant growth promotion. *Madras Agricultural Journal*, 106.

Ramachandran, V. S., Swarupanandan, K., & Sanjappa, M. (2014). Status and distribution of Humboldtia bourdillonii (Leguminosae), an endangered tree species of the Western Ghats, India. *Tropical Ecology*, 55(1), 85-91.

Rather SA, Subramaniam S, Danda S, Pandey AK (2018). Discovery of two new of Crotalaria (Leguminosae, species Crotalarieae) from Western Ghats, India. **PLoS** ONE 13(2): e0192226. https://doi.org/10.1371/journal.pone.0192226 Rather, S. A., Radbouchoom, S., Wang, K., Xiao, Y., Liu, H., & Schneider, H. (2024). Molecular, morphological, and morphometric evidence reveal a new, critically endangered rattlepod (Crotalaria, Fabaceae/Leguminosae, Papilionoideae) tropical China. PhytoKeys, 242, 333.

Rokade, K., Dalavi, J. V., Gaikwad, S., & Gaikwad, N. (2020). *Crotalaria shrirangiana* (Fabaceae): a new rattlepod from the Western Ghats of India.

Saleem, A. R., Brunetti, C., Khalid, A., Della Rocca, G., Raio, A., Emiliani, G., De Carlo, A., Mahmood, T., & Centritto, M. (2018). Drought response of Mucuna pruriens (L.) DC. inoculated with ACC deaminase and IAA producing rhizobacteria. *PloS one*, *13*(2), e0191218.

https://doi.org/10.1371/journal.pone.0191218 Sardar, M. F., Younas, F., Farooqi, Z. U. R., & Li, Y. (2023). Soil nitrogen dynamics in natural forest ecosystem: a review. *Frontiers in Forests and Global Change*, 6, 1144930.

Silva, T. M., Macêdo, G. D. M., Soares, N. Z. D., Fonseca, M. C. A., Lacerda, G. A., Veloso, M. D. D. M., ... & Arrudas, S. R. (2021). Phytoremediation potential of crotalaria juncea plants in lead-contaminated soils. *Journal of Agricultural Science*, 13(12), 27.

Sreekumari, G. R., Remadevi, R. K. S., Koshy, K. C., & Baby, S. (2025). An Assessment of the Ethnomedicinal Properties of Endemic Flowering Plants of the Western Ghats, India. *Pharmacognosy Reviews*, 19(38), 260-266.

Thamizhseran N, Shendye GV. (2023). Occurrence of two endophytic associative nitrogen-fixing Caulobacter spp., from three non-nodulating endemic legumes based on nifH gene analysis. *J App Biol Biotech*. 11(1):171-175. DOI: 10.7324/JABB.2023.110123

Wagh, S.D. & M.T. Patil (2023). Legumes (Fabaceae) from Satmala hills, Maharashtra, India. *Journal of Threatened Taxa* 15(12): 24427–

24436. https://doi.org/10.11609/jott.8176.15.1
2.24427-24436

Webster, G., Mullins, A. J., Cunningham-Oakes, E., Renganathan, A., Aswathanarayan, J. B., Mahenthiralingam, E., & Vittal, R. R. (2020). Culturable diversity of bacterial endophytes associated with medicinal plants

of the Western Ghats, India. *FEMS microbiology ecology*, *96*(9), fiaa147. https://doi.org/10.1093/femsec/fiaa147

Youseif, S. H., El-Megeed, F. H. A., Soliman, M. S., Ageez, A., Mohamed, A. H., Ali, S. A.,

& El-Kholy, A. A. (2025). Nodules-associated Klebsiella oxytoca complex: genomic insights into plant growth promotion and health risk assessment. *BMC microbiology*, 25(1), 294.