

# P-order e-open Continuous Mapping in Cubic Topological Spaces

## B. VIJAYALAKSHMI <sup>1</sup>, M. MUTHUKALIAMMAL <sup>2</sup>, G. SARAVANAKUMAR <sup>3</sup>

<sup>1</sup>PG and Research Department of Mathematics, Government Arts College, C.Mutlur,

Chidambaram, Tamil Nadu-608 102, India. mathvijaya2006au@gmail.com

<sup>1</sup>Department of Mathematics, Annamalai University, Annamalai Nagar - 608 002, India.

<sup>2</sup>Mangayarkarasi College of Arts and Science for Women, Madurai, India; muthukaliammal175@gmail.com

<sup>3</sup>Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D

Institute of Science and Technology (Deemed to be University), Avadi, Chennai-600062, India.

saravananguru2612@gmail.com

Corresponding author: <a href="mailto:saravananguru2612@gmail.com">saravananguru2612@gmail.com</a>

DOI: https://doi.org/10.63001/tbs.2024.v19.i02.S.I(1).pp792-795

#### **KEYWORDS**

P-cubic e-continuous, P-cubic δS-continuous, P-cubic δP-continuous, P-cubic e^\*-continuous, P-cubic a-continuous

Received on:

19-09-2024

Accepted on:

26-12-2024

#### ABSTRACT

In this paper, we introduce a *P*-cubic *e*-continuous mapping in *P* order cubic topological spaces. Also, we discuss about nearby open sets, their properties and examples of it. Moreover, we look into some of their primary properties and examples of *P*-cubic *e*-continuous in a *P* order cubic topological space.

AMS (2000) subject classification: 03E72, 54A10, 54A40

### **INTRODUCTION**

The concept of fuzzy set and interval-valued fuzzy set (IVFS) was first proposed by Zadeh [14, 15]. Following this, fuzzy topological space was introduced by C. L. Chang [3] in 1968. Subsequently, in 2012, Y. B. Jun [9] utilized the notions of fuzzy sets and interval-valued fuzzy sets to introduce a novel set called cubic set. Akhtar [1], in 2016, constructed a topological structure based on cubic set theory, termed as cubic topological space, which discussed two variants known as P-cubic topological space and R-cubic topological space. Further advancements were made in 2019 by Loganayaki and Jayanthi [11], who introduced interior and closure in P-cubic topological space and R-cubic topological space, along with various types of open sets and continuous mappings on these spaces.

In a series of significant contributions, E. Ekici [4, 5, 6, 7, 8] extensively investigated the properties of e and  $e^{\star} \star$  sets, along with nearby open sets, within the context of general topological spaces. Ekici's research provided valuable insights into the behavior of these sets, contributing significantly to the understanding of topological structures.

The objective of our paper is to introduce P-order e-open Continuous Mapping and its associated nearby open sets. We aim to establish solid theorems and provide illustrative examples to support our propositions.

#### **Preliminaries**

**Definition 2.1** [15] A closed sub-interval of I = [0,1] is called interval number.  $a = [a^-, a^+]$  where  $0 \le a^- \le a^+ \le 1$ . [I] denotes the set of all interval numbers.

**Definition 2.2** [15] Let X be a non-empty set. A function  $A: X \to II$ , from X to all interval number is called interval valued fuzzy set ( IVFS) in X.  $[I]^X$  denotes the set of all IVFS in X.  $\forall A \in [I]^X$  and  $x \in XA(x) = [A^-(x), A^+(x)]$  is called degree of membership of x in A. individually  $A^-: X \to I$  and  $A^+: X \to I$  is Fuzzy set in X. Simply  $A^-$  is called lower fuzzy set and  $A^+$  is called upper fuzzy set.

**Definition 2.3** [9] Let X be a non-empty set, Then a structure  $A = \{\langle x, \mu(x), \lambda(x) \rangle / x \in X\}$  is cubic set in X in which  $\mu$  is interval valued fuzzy set ( IVFS) in X and  $\lambda$  is fuzzy set in X. Simply a cubic set is denoted by  $A = \langle \mu, \lambda \rangle$  and  $C^X$  denotes the collection of all cubic sets in X.

**Definition 2.4** [9] Let  $X \neq \phi$ , Then a cubic set  $A = \langle \mu, \lambda \rangle$  is said to be internal cubic set (ICS) if  $\mu^-(x) \leq \lambda(x) \leq \mu^+(x) \forall x \in X$ . **Definition 2.5** [9] Let  $X \neq \phi$ , Then a cubic set  $A = \langle \mu, \lambda \rangle$  is said to be an external cubic set (ECS) if  $\lambda(x) \not\in (\mu^-(x), \mu^+(x)) \forall x \in X$ .

1. A cubic set  $A = \langle \mu, \lambda \rangle$  in which  $\mu(x) = 0$  and  $\lambda(x) = 1$  (resp.  $\mu(x) = 1$  and  $\lambda(x) = 0$ )  $\forall x \in X$  is denoted by 0 (resp. 0).

2. A cubic set  $A = \langle \mu, \lambda \rangle$  in which  $\mu(x) = 0$  and  $\lambda(x) = 0$  (resp.

 $\mu(x) = 1$  and  $\lambda(x) = 1 \forall x \in X$  is denoted by  $\hat{0}(\text{resp. } \hat{1})$ .

Let  $A = \langle \mu, \lambda \rangle$  and  $B = \langle \beta, \eta \rangle$  be two cubic sets in X, Then we *X*}. define; 2. e closure (resp.  $\delta$  pre closure &  $\delta$  semi1.  $A = B \Leftrightarrow \mu = \beta$  and  $\lambda = \eta$ closure) of R (briefly,  $CS_PeclR$  (resp.  $CS_P\delta\mathcal{P}cl$  &  $CS_P\delta\mathcal{S}cl$ )) is 2.  $A \subseteq_P B \Leftrightarrow \mu \subseteq \beta$  and  $\lambda \leq \eta$ defined by  $CS_PeclR$  (resp.  $CS_P\delta\mathcal{P}cl \& CS_P\delta\mathcal{S}cl$ ) =  $\bigcap \{\tilde{G}: R\subseteq \tilde{G}\}$ 3.  $A^c = \langle \mu^c, 1 - \lambda \rangle = \{ \langle x, \mu^c(x), 1 - \lambda(x) \rangle / x \in A^c \}$ & R is a  $CS_pecs$  (resp. $CS_p\delta Pcs$  &  $CS_p\delta Scs$ ) in X}. *X*} **Definition 2.12** [11] Let  $(X, \mathcal{F}_P)$  and  $(Y, \mathcal{G}_v)$  be any 4.  $(A^c)^c = A$ two NSts's. A map  $f:(X,\mathcal{F}_P) \to (Y,\mathcal{G}_p)$  is said to be  $CS_P$  [(i)]  $\mathbf{5.} \quad \hat{\mathbf{0}}^c = \hat{\mathbf{1}} \text{ and } \hat{\mathbf{1}}^c = \hat{\mathbf{0}}$ 1. continuous (briefly,  $CS_PCts$ ) if the inverse 6.  $(\bigcup_P A_i)^c = \bigcap_P A_i^c$  and  $(\bigcap_P A_i)^c = \bigcup_P A_i^c$ image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_Pos$  in  $(X, \mathcal{F}_P)$ . 7. P-Union  $\bigcup_{i\in\mathbb{N}} A = \{\langle x, (\bigcup_{i\in\mathbb{N}} \mu_i)(x), (\vee \lambda_i)i \in A\}$ 2.  $\beta$ -continuous (briefly,  $CS_P\beta Cts$ ) if the inverse  $\mathbb{N}(x)/x \in X$ image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_P\beta os$  in  $(X, \mathcal{F}_P)$ . 8. P-Intersection  $\bigcap_{i\in\mathbb{N}} A = \{(x, (\bigcap_{i\in\mathbb{N}} \mu_i)(x), i\in$ 3 P-order e-open Continuous in Cubic Topological  $\mathbb{N}(\Lambda \lambda_i)(x)/x \in X$ Spaces **Definition 2.6** [1] A P-cubic topology (in brief Pct ) is **Definition 3.1** Let  $(X, \mathcal{F}_P)$  and  $(Y, \mathcal{G}_p)$  be any two the family  $\mathcal{F}_P$  of cubic sets in X which satisfies the following NSts's. A map  $f:(X,\mathcal{F}_P) \to (Y,\mathcal{G}_p)$  is said to be  $CS_P$ conditions; 1.  $\delta S$ -continuous (briefly,  $CS_P \delta SCts$ ) if the 1.  $\hat{0}, \hat{1} \in \mathcal{F}_p$ . inverse image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_P\delta Sos$  in  $(X, \mathcal{F}_P)$ . 2. Let  $A_i \in \mathcal{F}_P$ , Then  $\bigcup_P A_i \in \mathcal{F}_P$ .  $i \in \mathbb{N}$ 2.  $\delta \mathcal{P}$ -continuous (briefly,  $CS_P \delta \mathcal{P}Cts$ ) if the 3. Let  $A, B \in \mathcal{F}_P$ , Then  $A \cap_P B \in \mathcal{F}_P$ . inverse image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_P\delta\mathcal{P}os$  in  $(X, \mathcal{F}_p)$ . The pair  $(X, \mathcal{F}_P)$  is called P-cubic topological space (in 3. e-continuous (briefly,  $CS_PeCts$ ) if the inverse brief, Pcts ). image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_Peos$  in  $(X, \mathcal{F}_P)$ . **Definition 2.7** [11] A set R is said to be a P-order 4.  $e^*$ -continuous (briefly,  $CS_Pe^*Cts$ ) if the inverse Cubic set (in brief,  $CS_P$ )  $\lceil (i) \rceil$ 1. regular open set (briefly,  $CS_{P}ros$ ) if R =image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_Pe^*os$  in  $(X, \mathcal{F}_P)$ . 5. a-continuous (briefly,  $CS_PaCts$ ) if the inverse  $CS_Pint(CS_PclR)$ . image of every  $CS_Pos$  in  $(Y, \mathcal{G}_p)$  is a  $CS_Paos$  in  $(X, \mathcal{F}_P)$ . 2. regular closed set (briefly,  $CS_Prcs$ ) if R =**Proposition 3.1** The statements are hold but the  $CS_Pcl(CS_PintR)$ . **Definition 2.8** [11] A set R is said to be a  $CS_P$  [(i)] converse does not true. Every 1. interior(resp.  $\delta$  interior) of R (briefly, 1.  $CS_PCts$  is a  $CS_P\delta SCts$ . 2.  $CS_PCts$  is a  $CS_P\delta PCts$ .  $CS_P intR$  (resp.  $CS_P \delta int$  )) is defined by  $CS_P intR$  (resp.  $CS_P \delta int$ ) 3.  $CS_P \delta SCts$  is a  $CS_P eCts$ . =  $\bigcup \{\tilde{G}: \tilde{G} \subseteq R \& \tilde{G} \text{ is a } CS_Pos \text{ (resp. } CS_P\delta os) \text{ in } X\}.$ 2. closure(resp.  $\delta$  closure) of R (briefly,  $CS_PclR$ 4.  $CS_p \delta \mathcal{P}Cts$  is a  $CS_p eCts$ . 5.  $CS_peCts$  is a  $CS_pe^*Cts$ . (resp.  $CS_P\delta cl$  )) is defined by  $CS_PclR$  (resp.  $CS_P\delta cl$ ) = 6.  $CS_peCts$  is a  $CS_paCts$ .  $\bigcap \quad \{\tilde{G} \colon \tilde{G} \supseteq R \& \tilde{G} \text{ is a } CS_P cs \text{ (resp. } CS_P \delta cs) \text{ in } X\}.$ 7.  $CS_{P}aCts$  is a  $CS_{P}\beta Cts$ . **Definition 2.9** [11] A set R is said to be a  $CS_P$  [(i)] 8.  $CS_P\beta Cts$  is a  $CS_Pe^*Cts$ . 1.  $\beta$  open set (briefly,  $CS_P\beta os$ ) if  $R \subseteq$ Proof.  $CS_Pcl(CS_Pint(CS_PclR))$ . 1. Let  $\mathfrak{M}$  be a  $CS_POS$  in Y. Since f is  $CS_PCts$ , **Definition 2.10** [12] A set R is said to be a  $CS_P$  [(i)]  $f^{-1}(\mathfrak{M})$  is  $CS_Pos$  in X. Since all  $CS_Pos$  are  $CS_P\delta Sos$ ,  $f^{-1}(\mathfrak{M})$  is 1.  $\delta$ -pre open set (briefly,  $CS_P\delta\mathcal{P}os$ ) if  $R\subseteq$  $CS_P\delta Sos$  in X. Hence f is a  $CS_P\delta SCts$ .  $CS_Pint(CS_P\delta clR)$ . 2.  $\delta$ -semi open set (briefly,  $CS_P\delta Sos$ ) if  $R \subseteq$ 2. Let  $\mathfrak{M}$  be a  $CS_Pos$  in Y. Since f is  $CS_PCts$ ,  $f^{-1}(\mathfrak{M})$  is  $CS_Pos$  in X. Since all  $CS_Pos$  are  $CS_P\delta\mathcal{P}os$ ,  $f^{-1}(\mathfrak{M})$  is  $CS_{P}cl(CS_{P}\delta intR)$ .  $CS_P\delta Pos$  in X. Hence f is a  $CS_P\delta PCts$ . 3. e-open set (briefly,  $CS_peos$ ) if  $R \subseteq$ 3. Let  $\mathfrak{M}$  be a  $CS_Pos$  in Y. Since f is  $CS_P\delta SCts$ ,  $CS_Pcl(CS_P\delta intR) \cup CS_Pint(CS_P\delta clR)$ .  $f^{-1}(\mathfrak{M})$  is a  $CS_P\delta Sos$  in X. Since every  $CS_P\delta os$  is a  $CS_Peos$ , 4.  $e^*$ -open set (briefly,  $CS_Pe^*os$ ) if  $R \subseteq$  $f^{-1}(\mathfrak{M})$  is a  $CS_peos$  in X. Hence f is a  $CS_peCts$ .  $CS_Pcl(CS_Pint(CS_P\delta clR))$ . 5. a-open set (briefly,  $CS_paos$ ) if  $R \subseteq$ 4. Let  $\mathfrak{M}$  be a  $CS_Pos$  in Y. Since f is  $CS_P\delta\mathcal{P}Cts$ ,  $f^{-1}(\mathfrak{M})$  is a  $CS_P\delta\mathcal{P}os$  in X. Since every  $CS_P\delta\mathcal{P}os$  is a  $CS_Peos$ ,  $CS_P int(CS_P cl(CS_P \delta intR)).$  $f^{-1}(\mathfrak{M})$  is a  $CS_Peos$  in X. Hence f is a  $CS_PeCts$ . The complement of a  $CS_Pe$ -open set (resp.  $CS_P\delta os$ , 5. Let  $\mathfrak{M}$  be a  $CS_pos$  in Y. Since f is  $CS_peCts$ ,  $CS_P\delta Pos$ ,  $CS_P\delta Sos$  &  $CS_Pe^*os$ ) is called a neutrosophic soft e $f^{-1}(\mathfrak{M})$  is a  $CS_peos$  in X. Since every  $CS_peos$  is a  $CS_pe^*os$ , (resp.  $\delta$ ,  $\delta$ -pre,  $\delta$ -semi &  $e^*$ ) closed set (briefly,  $CS_pecs$  (resp.  $f^{-1}(\mathfrak{M})$  is a  $CS_Pe^*os$  in X. Hence f is a  $CS_Pe^*Cts$ .  $CS_P\delta cs$   $CS_P\delta \mathcal{P} cs$ ,  $CS_P\delta \mathcal{S} cs$  &  $CS_Pe^*cs$ )) in X. 6. Let  $\mathfrak{M}$  be a  $CS_pos$  in Y. Since f is  $CS_peCts$ , The family of all  $CS_P\delta\mathcal{P}os$  (resp.  $CS_P\delta\mathcal{P}cs$ ,  $CS_P\delta\mathcal{S}os$ ,  $f^{-1}(\mathfrak{M})$  is a  $CS_{P}aos$  in X. Since every  $CS_{P}eos$  is a  $CS_{P}aos$  ,  $CS_P \delta S cs$ ,  $CS_P e cs$ ,  $CS_P e cs$   $CS_P e^* cs$   $S_P e^* cs$  of  $S_P e cs$  $f^{-1}(\mathfrak{M})$  is a  $CS_paos$  in X. Hence f is a  $CS_paCts$ .

 $CS_P\delta Scs$ ,  $CS_Peos$ ,  $CS_Pecs$   $CS_Pe^*os$  &  $CS_Pe^*cs$ ) of X is denoted by  $CS_P\delta POS(X)$  (resp.  $CS_P\delta PCS_P(X)$ ,  $CS_P\delta SOS(X)$ ,  $CS_P\delta SCS_P(X)$ ,  $CS_Peos(X)$ ,  $CS_Peos(X)$ ,  $CS_Peos(X)$  &  $CS_Peos(X)$ 

Definition 2.11 [12] A set R is said to be a  $CS_P$  [(i)] 1. e interior(resp.  $\delta$  pre interior &  $\delta$  semi interior) of R (briefly,  $CS_PeintR$  (resp.  $CS_P\delta\mathcal{P}int$  &  $CS_P\delta\mathcal{S}int$ )) is defined by  $CS_PeintR$  (resp.  $CS_P\delta\mathcal{P}int$  &  $CS_P\delta\mathcal{S}int$ ) = U { $\tilde{G}: \tilde{G} \subseteq R$  &  $\tilde{G}$  is a  $CS_Peos$  (resp.  $CS_P\delta\mathcal{P}os$  &  $CS_P\delta\mathcal{S}os$ ) in

Remark 3.1 We obtain the following diagram from the results we discussed above and justified from the following examples.

7. Let  $\mathfrak{M}$  be a  $CS_pos$  in Y. Since f is  $CS_paCts$ ,

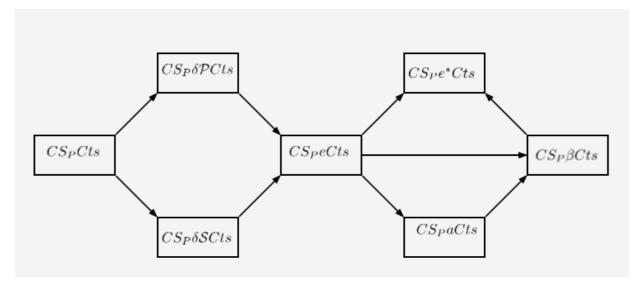
8. Let  $\mathfrak{M}$  be a  $CS_Pos$  in Y. Since f is  $CS_P\beta Cts$ ,

 $f^{-1}(\mathfrak{M})$  is a  $CS_P\beta os$  in X. Since every  $CS_Paos$  is a  $CS_P\beta os$ ,

 $f^{-1}(\mathfrak{M})$  is a  $CS_Pe^*os$  in X. Since every  $CS_P\beta os$  is a  $CS_Pe^*os$ ,

 $f^{-1}(\mathfrak{M})$  is a  $CS_P\beta os$  in X. Hence f is a  $CS_P\beta Cts$ .

 $f^{-1}(\mathfrak{M})$  is a  $CS_Pe^*os$  in X. Hence f is a  $CS_Pe^*Cts$ .



Example 3.1 Let X be a non-empty set and let  $\mathcal{F}_p = \{\hat{0}, \hat{1}, \mu_1, \mu_2, \mu_3\}, \mathcal{F'}_p = \{\hat{0}, \hat{1}, \mu_4, \mu_5, \mu_6, \mu_7, \mu_8, \mu_9\}$  be two P -cubic topologies on X where  $\mu_1 = \langle [0.2, 0.4], 0.3\rangle, \mu_2 = \langle [0.5, 0.7], 0.6\rangle, \mu_3 = \langle [0.8, 0.9], 0.8\rangle, \mu_4 = \langle [0.4, 0.6], 0.5\rangle, \mu_5 = \langle [0.7, 0.9], 0.8\rangle, \mu_6 = \langle [0.1, 0.5], 0.7\rangle, \mu_7 = \langle [0.1, 0.2], 0.2\rangle, \mu_8 = \langle [0.3, 0.4], 0.4\rangle, \mu_9 = \langle [0.6, 0.8], 0.7\rangle$ . Define an idendity mapping  $f_p\colon (X, \mathcal{F}_p) \to (X, \mathcal{F'}_p)$ . Here  $f_p$  is  $CS_p \delta \mathcal{P} Cts$  but not a  $CS_p Cts$ , since  $\mu_4$  is  $CS_p \delta Sos$  but not  $CS_p cos$  in  $CS_p$ 

 $\begin{array}{lll} \textbf{Example 3.2} & \textit{Let X be a non-empty set and let $\mathcal{F}_p$} = \{\hat{0}, \hat{1}, \mu_1, \mu_2, \mu_3\}, \mathcal{F'}_p = \{\hat{0}, \hat{1}, \mu_4, \mu_5, \mu_6, \mu_7, \mu_8, \mu_9\} & \textit{be two $P$-cubic topologies} & \textit{on $X$} & \textit{where} & \mu_1 = \langle [0.2, 0.4], 0.3\rangle, \mu_2 = \langle [0.5, 0.7], 0.6\rangle, \mu_3 = \langle [0.8, 0.9], 0.8\rangle, \mu_4 = \langle [0.4, 0.6], 0.5\rangle, \mu_5 = \langle [0.7, 0.9], 0.8\rangle, \mu_6 = \langle [0.1, 0.5], 0.7\rangle, \mu_7 = \langle [0.1, 0.2], 0.2\rangle, \mu_8 = \langle [0.3, 0.4], 0.4\rangle, \mu_9 = \langle [0.6, 0.8], 0.7\rangle & \textit{Define an idendity mapping $f_p:(X, \mathcal{F}_p) \to (X, \mathcal{F'}_p)$.} & \textit{Here $f_p$ is $CS_p \delta S C ts$ but not $a$ $CS_p C ts$, since $\mu_9$ is $CS_p \delta S o$ but not $CS_p os$ in $(X, \mathcal{F}_p)$.} \end{array}$ 

Example 3.6 Let X be a non-empty set and let  $\mathcal{F}_{p} = \{\hat{0}, \hat{1}, \mu_{1}, \mu_{2}, \mu_{3}\}, \mathcal{F'}_{p} = \{\hat{0}, \hat{1}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9}\}$  be two P -cubic topologies on X where  $\mu_{1} = \langle [0.2, 0.4], 0.3\rangle, \mu_{2} = \langle [0.5, 0.7], 0.6\rangle, \mu_{3} = \langle [0.8, 0.9], 0.8\rangle, \mu_{4} = \langle [0.4, 0.6], 0.5\rangle, \mu_{5} = \langle [0.7, 0.9], 0.8\rangle, \mu_{6} = \langle [0.1, 0.5], 0.7\rangle, \mu_{7} = \langle [0.1, 0.2], 0.2\rangle, \mu_{8} = \langle [0.3, 0.4], 0.4\rangle, \mu_{9} = \langle [0.6, 0.8], 0.7\rangle$ . Define an idendity mapping  $f_{p} \cdot (X, \mathcal{F}_{p}) \rightarrow (X, \mathcal{F'}_{p})$ . Here  $f_{p}$  is  $CS_{p}e^{*}Cts$  but not a  $CS_{p}\beta Cts$ , since  $\mu_{7}$  is  $CS_{p}e^{*}os$  but not  $CS_{p}\beta cs$  in  $(X, \mathcal{F}_{p})$ .

**Example 3.7** Let X be a non-empty set and let  $\mathcal{F}_P =$ 

 $\begin{array}{lll} \{\hat{0},\hat{1},\mu_1,\mu_2,\mu_3\}, \mathcal{F'}_p = \{\hat{0},\hat{1},\mu_4,\mu_5,\mu_6,\mu_7,\mu_8,\mu_9\} & be & two & P & -cubic \\ topologies & on & X & where & \mu_1 = \langle [0.2,0.4],0.3\rangle, \mu_2 = \\ \langle [0.5,0.7],0.6\rangle,\mu_3 = \langle [0.8,0.9],0.8\rangle,\mu_4 = \langle [0.4,0.6],0.5\rangle,\mu_5 = \\ \langle [0.7,0.9],0.8\rangle,\mu_6 = \langle [0.1,0.5],0.7\rangle,\mu_7 = \langle [0.1,0.2],0.2\rangle,\mu_8 = \\ \langle [0.3,0.4],0.4\rangle,\mu_9 = \langle [0.6,0.8],0.7\rangle & Define & an & idendity & mapping \\ f_p\colon (X,\mathcal{F}_p) \to (X,\mathcal{F'}_p) & Here & f_p & is & CS_p\beta Cts & but & not & a & CS_peCts \\ since & \mu_6 & is & CS_p\beta os & but & not & CS_peos & in & (X,\mathcal{F}_p). \end{array}$ 

Example 3.8 Let X be a non-empty set and let  $\mathcal{F}_P = \{\hat{0}, \hat{1}, \mu_1, \mu_2, \mu_3\}, \mathcal{F'}_p = \{\hat{0}, \hat{1}, \mu_4, \mu_5, \mu_6, \mu_7, \mu_8, \mu_9\}$  be two P -cubic topologies on X where  $\mu_1 = \langle [0.2, 0.4], 0.3 \rangle, \mu_2 = \langle [0.5, 0.7], 0.6 \rangle, \mu_3 = \langle [0.8, 0.9], 0.8 \rangle, \mu_4 = \langle [0.4, 0.6], 0.5 \rangle, \mu_5 = \langle [0.7, 0.9], 0.8 \rangle, \mu_6 = \langle [0.1, 0.5], 0.7 \rangle, \mu_7 = \langle [0.1, 0.2], 0.2 \rangle, \mu_8 = \langle [0.3, 0.4], 0.4 \rangle, \mu_9 = \langle [0.6, 0.8], 0.7 \rangle$ . Define an idendity mapping  $f_p \colon (X, \mathcal{F}_p) \to (X, \mathcal{F'}_p)$ . Here  $f_p$  is  $CS_p \beta Cts$  but not a  $CS_p a Cts$ , since  $\mu_8$  is  $CS_p \beta os$  but not  $CS_p a cs$  in  $(X, \mathcal{F}_p)$ .

 $\begin{array}{c} \textbf{Example 3.9 Let } X \text{ be a non-empty set and let } \mathcal{F}_{p} = \{ \hat{0}, \hat{1}, \mu_{1}, \mu_{2}, \mu_{3} \}, \mathcal{F'}_{p} = \{ \hat{0}, \hat{1}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}, \mu_{9} \} \text{ be two } P \text{ -cubic topologies on } X \text{ where } \mu_{1} = \langle [0.2, 0.4], 0.3 \rangle, \mu_{2} = \langle [0.5, 0.7], 0.6 \rangle, \mu_{3} = \langle [0.8, 0.9], 0.8 \rangle, \mu_{4} = \langle [0.4, 0.6], 0.5 \rangle, \mu_{5} = \langle [0.7, 0.9], 0.8 \rangle, \mu_{6} = \langle [0.1, 0.5], 0.7 \rangle, \mu_{7} = \langle [0.1, 0.2], 0.2 \rangle, \mu_{8} = \langle [0.3, 0.4], 0.4 \rangle, \mu_{9} = \langle [0.6, 0.8], 0.7 \rangle \text{ . Define an idendity mapping } f_{p} : (X, \mathcal{F}_{p}) \to (X, \mathcal{F'}_{p}) \text{ . Here } f_{p} \text{ is } CS_{p}eCts \text{ but not a } CS_{p}aCts \text{ , since } \mu_{8} \text{ is } CS_{p}eos \text{ but not } CS_{p}acs \text{ in } (X, \mathcal{F}_{p}). \end{array}$ 

**Theorem 3.1** A map  $f:(X,\mathcal{F}_p) \to (Y,\mathcal{G}_p)$  is  $CS_peCts$  iff the inverse image of each  $CS_pcs$  in Y is  $CS_pecs$  in X.

**Proof.** Let  $\mathfrak{M}$  be a  $CS_pcs$  in Y. This implies  $\mathfrak{M}^c$  is  $CS_pos$  in Y. Since f is  $CS_peCts$ ,  $f^{-1}(\mathfrak{M}^c)$  is  $CS_peos$  in X. Since  $f^{-1}(\mathfrak{M}^c) = ((f^{-1}\mathfrak{M}))^c$ ,  $f^{-1}(\mathfrak{M})$  is a  $CS_peos$  in X.

Conversely, let  $\mathfrak M$  be a  $CS_pcs$  in Y. Then  $\mathfrak M^c$  is a  $CS_pos$  in Y. By hypothesis  $f^{-1}(\mathfrak M^c)$  is  $CS_peos$  in X. Since  $f^{-1}(\mathfrak M^c) = ((f^{-1}\mathfrak M))^c$ ,  $(f^{-1}\mathfrak M))^c$  is a  $CS_peos$  in X. Therefore  $f^{-1}(\mathfrak M)$  is a  $CS_pecs$  in X. Hence f is  $CS_peCts$ .

**Definition 3.2** A  $CS_P t$   $(X, \mathcal{F}_P)$  is said to be  $CS_P eU_{\underline{1}}$ 

(in short  $CS_PeU_{\underline{1}}$  )-space, if every  $CS_Peos$  in X is a  $CS_Pos$  in X.

**Theorem 3.2** Let  $f:(X,\mathcal{F}_P)\to (Y,\mathcal{G}_p)$  be a  $CS_PeCts$ , then f is a  $CS_Pcts$  if X is a  $CS_PeU_1$ -space.

**Proof.** Let  $\mathfrak{M}$  be a  $CS_Pos$  in Y. Then  $f^{-1}(\mathfrak{M})$  is a  $CS_Peos$  in X, by hypothesis. Since X is a  $CS_PeU_{\frac{1}{2}}$ -space,  $f^{-1}(\mathfrak{M})$  is a  $CS_Pos$  in X. Hence f is a  $CS_PeCts$ .

**Theorem 3.3** Let  $f:(X,\mathcal{F}_p) \to (Y,\mathcal{G}_p)$  be a  $CS_peCts$  map and  $g:(Y,\mathcal{G}_p) \to (Z,\mathcal{E}_p)$  be a  $CS_pCts$ , then  $g \circ f:(X,\mathcal{F}_p) \to (Z,\mathcal{E}_p)$  is a  $CS_peCts$ .

**Proof.** Let  $\mathfrak{M}$  be a  $CS_Pos$  in Z. Then  $g^{-1}(\mathfrak{M})$  is a  $CS_Pos$  in Y, by hypothesis. Since f is a  $CS_PeCts$  map,  $f^{-1}(g^{-1}(\mathfrak{M}))$  is a  $CS_Peos$  in X. Hence  $g\circ f$  is a  $CS_PeCts$  map.

**Theorem 3.4** Let  $f:(X,\mathcal{F}_p) \to (Y,\mathcal{G}_p)$  be a  $CS_peCts$  map. Then the following conditions are hold.

i.  $f(CS_pecl(\mathfrak{M})) \leq CS_pcl(f(\mathfrak{M}))$ , for all  $CS_pcs \mathfrak{M}$ 

in X.

ii.  $CS_Pecl(f^{-1}\mathfrak{M}) \leq f^{-1}(CS_Pcl\mathfrak{M})$ , for all  $CS_Pcs$ 

 $\mathfrak{M}$  in Y. **Proof.** (i) Since  $CS_Pecl(f(\mathfrak{M}))$  is a  $CS_Pecs$  in Y and f is  $CS_PeCts$ , then  $f^{-1}(CS_Pecl(f(\mathfrak{M})))$  is  $CS_Pec$  in Y. Now, since  $\mathfrak{M} \leq f^{-1}(CS_Pcl(f(\mathfrak{M})))$  ,  $CS_Pecl(\mathfrak{M}) \leq f^{-1}(CS_Pecl(f(\mathfrak{M})))$  . Therefore,  $f(CS_Pecl(\mathfrak{M})) \leq CS_Pcl(f(\mathfrak{M}))$ .

(ii) By replacing  $\mathfrak{M}$  with  $f^{-1}(\mathfrak{M})$  in (i), we obtain  $f(CS_pecl(f^{-1}\mathfrak{M})) \leq CS_pcl(f(f^{-1}\mathfrak{M})) \leq CS_pcl(f^{-1}\mathfrak{M})) \leq CS_pcl(f^{-1}\mathfrak{M}) \leq CS_pcl(f^{-1}\mathfrak{M})$ . Hence,  $CS_pecl(f^{-1}\mathfrak{M}) \leq f^{-1}(CS_pcl(f^{-1}\mathfrak{M})) \leq CS_pcl(f^{-1}\mathfrak{M})$ .

**Remark 3.2** If f is  $CS_peCts$ , then

1.  $f(CS_pecl(\mathfrak{M}))$  is not necessarily equal to  $CS_pcl(f(\mathfrak{M}))$  where  $(\mathfrak{M}) \in X$ .

2.  $CS_pecl(f^{-1}\mathfrak{M})$  is not necessarily equal to  $f^{-1}(CS_pcl\mathfrak{M})$  where  $\mathfrak{M} \in Y$ .

Theorem 3.5 f is  $CS_peCts$  iff  $f^{-1}(CS_pint(\mathfrak{M})) \leq CS_peint(f^{-1}(\mathfrak{M}))$ , for all  $CS_pcs$   $\mathfrak{M}$  in Y.

**Proof.** If f is  $CS_peCts$  and  $\mathfrak{M} \in Y$ .  $CS_pint(\mathfrak{M})$  is  $CS_pos$  in Y and hence,  $f^{-1}(CS_pint(\mathfrak{M}))$  is  $CS_peos$  in X. Therefore  $CS_peint(f^{-1}(CS_peint(\mathfrak{M}))) = f^{-1}(CS_pint(\mathfrak{M}))$ . Also,  $CS_pint(\mathfrak{M}) \leq \mathfrak{M}$ , implies that  $f^{-1}(CS_pint(\mathfrak{M})) \leq f^{-1}(\mathfrak{M})$ . Therefore  $CS_peint(f^{-1}(CS_pint(\mathfrak{M}))) \leq CS_peint(f^{-1}(\mathfrak{M}))$ . That is  $f^{-1}(CS_pint(\mathfrak{M})) \leq CS_peint(f^{-1}(\mathfrak{M}))$ .

Therefore  $CS_peint(f^{-1}(\mathbb{W})) = CS_peint(f^{-1}(\mathbb{W}))$ . Conversely, let  $f^{-1}(CS_pint(\mathbb{W})) \leq CS_peint(f^{-1}(\mathbb{W}))$  for all subset  $\mathbb{W}$  of Y. If  $\mathbb{W}$  is  $CS_pos$  in Y, then  $CS_pint(\mathbb{W}) = \mathbb{W}$ . By assumption,  $f^{-1}(CS_pint(\mathbb{W})) \leq CS_peint(f^{-1}(\mathbb{W}))$ . Thus  $f^{-1}(\mathbb{W}) \leq CS_peint(f^{-1}(\mathbb{W}))$ . But  $CS_peint(f^{-1}(\mathbb{W})) \leq f^{-1}(\mathbb{W})$ . Therefore  $CS_peint(f^{-1}(\mathbb{W})) = f^{-1}(\mathbb{W})$ . That is,  $f^{-1}(\mathbb{W})$  is  $CS_peos$  in X, for all  $CS_pos$   $\mathbb{W}$  in Y. Therefore f is  $CS_peCts$  on X.

**Remark 3.3** If f is  $CS_Pects$ , then  $CSeint(f^{-1}(A))$  is not necessarily equal to  $f^{-1}(CS_int(A))$  where  $A \in Y$ .

#### REFERENCES

- Akhter Zeb, Saleem Abdullah, Majid Khan and Abdul Majid, Cubic Topology, International Journal of Computer Science and Information Security, 14(8) (2016), 659-669.
- K. Atanassov Intuitionistic fuzzy sets. Fuzzy Sets

- Syst 20, (1986), 87 96.
- C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968)
- E. Ekici, On e-open sets,  $DP^*$ -sets and  $DP\epsilon^*$ -sets and decompositions of continuity, Arabian Journal for Science and Engineering, 33 (2A)(2008), 269-282
- E. Ekici, Some generalizations of almost contrasuper-continuity, Filomat, 21 (2) (2007), 31-44.
- E. Ekici, New forms of contra-continuity, Carpathian Journal of Mathematics, 24 (1) (2008), 37-45.
- E. Ekici, On e\*-open sets and (D,S)\*-sets, Mathematica Moravica, 13 (1) (2009), 29-36.
- E. Ekici, A note on a-open sets and e\*-open sets, Filomat, 22 (1) (2008), 89-96.
- Y. B. Jun, C.S.Kim, K.O.Yang, Cubic sets and Operations on Cubic sets. Inform.4(2012), No. 1, 83-98
- L. J. Kohout, W. Bandler, Fuzzy interval inference utilizing the checklist paradigm and BK-relational products, in: R.B. Kearfort et al. (Eds.),
   Applications of Interval Computations, Kluwer, Dordrecht, 1996, pp. 291-335.
- P. Loganayaki and D. Jayanthi, Various continuous mappings on cubic topological spaces, AIP Conf. Proc. 2261, 030096 (2020)
- B. Vijayalakshmi, M. Muthukalaiammal, G. Saravanakumar and C. Inbam, P-order e-open sets in cubic topological spaces, 14(78) (2023), 57206-57212.
- R. Sambuc, Functions Φ-Flous, Application àlaide au Diagnostic en Pathologie Thyroidienne, These de Doctorat en Medecine, Marseille, 1975.
- L. A. Zadeh. Fuzzy sets. Inform. Control 8 (1965), 338-353.
- L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning- I, Inform. Sci. 8 (1975) 199-249.
- W. R. Zhang Bipolar Fuzzy Sets and Relations," December, 1994.