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ABSTRACT 
 
 

Optimization of the layouts of arrays of wave energy converters (WECs) is a challenging problem. The hydrodynamic 

analysis and performance estimation of such systems are performed using semi-analytical and numerical models such as the 

boundary element method. However, the analysis of an array of such converters becomes computationally expensive, and the 

computational time increases rapidly with the number of devices in the system. As such determination of optimal layouts of 

WECs in arrays becomes extremely difficult. This paper explores the Ada Boost with Naïve Bayes perform well as well it 

showing an efficient outcome. It has the greatest accuracy result of 85.75%. The Ada Boost with Naïve Bayes produces the 

greatest precision result of 0.86. The Ada Boost with Naïve Bayes and Stochastic Gradient Boost with Naïve Bayes produce 

the maximum recall of 0.86. The Ada Boost with Naïve Bayes has the greatest F-Measure result of 0.86. The Ada Boost 

with Naïve Bayes model has the highest MCC value of 0.65. The Ada Boost with Naïve Bayes model has the greatest kappa 

value of 0.66. The Ada Boost with Naïve Bayes model has an optimal results compare with other models. 
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This work introduces wave energy converters and power 
systems. [1]Energy demand will rise globally in the coming 
decades. Meanwhile, sustainable development and 
environmental protection must limit the energy industry's 
growth.[2] Oil shortages are inevitable. Renewable energy could 
help reduce energy industry carbon dioxide emissions. Such 
technologies are booming.[3,4] Europe leads wind energy with 
thousands of MW added in the last few years. Governments and 
industry are focused on offshore wind energy. This rapidly 
increasing field interacts favourably with some marine 
renewables, and combined offshore power plants to utilise more 
resources have been suggested. Wave energy, the most 
concentrated renewable energy source, may develop in the next 
years. It might produce high pressure for reverse osmosis, which 
could desalinate water on islands. Tidal streams, oceanic 
temperature and salinity gradients, and waves are other marine 

renewable energy sources. Most wave energy technologies 
require extensive R&D. Parallel technology and power 
electronics standardization have improved prospects since the 
1970s (new converters can be cheaper and more reliable). Wave 
energy technology has reduced kWh production costs by one 
order of magnitude in the last 20 years. Many demonstration 
wave power plants have been developed (a few were full-size). 
Recently, some prototypes have proven their technology and 
may be suitable for pre-commercialization. 
Ocean wave energy is a renewable energy source that could help 
meet global electricity demand. Concentrated solar energy has 
high short- and long-term variability. Well-built devices can 
transform sea wave energy into electricity by following 
numerous ideas and concepts. Systems must survive tremendous 
loads in storms. So, any cost-effective wave energy tapping 
strategy must balance efficiency and reliability, which presents 
technical hurdles. 

INTRODUCTION 
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What follows is the rest of the paper's outline: The associated 
work is described in Section 2. The proposed technique is 
introduced in Section 3, followed by a brief overview of the 
results and discussion in Section 4. In Section 5, we wrap up the 
paper and its findings. 
II Literature Survey 
Fossil fuels provide most energy [5]. Climate change and 
pollution are caused by non-renewable energy [6]. Low-carbon 
energy is essential. Non-petroleum energy sources have grown 
significantly. Solar, wind, tidal, and geothermal energy are most 
popular [7]. Wave energy is the second-most potential ocean 
renewable energy [8]. WECs generate power from ocean waves. 
WECs differ [9,10]. Investment and power management depend 
on reliable WEC forecasts. Investors worldwide need WEC system 
power generation potential predictions [11]. Numerical 
calculations and experiments using WEC system output power 
[12,13]. "Searaser," a breakthrough wave energy converter, was 
used in this study [14]. Ocean waves are affordable, safe, 
predictable, and clean. Large-scale integrated maritime energy 
systems are vulnerable to uncertainty [15,16]. Hence, accurate 
ocean wave energy estimates reduce power generation building 
costs and pilot programmes. Wave energy is abundant and 
predictable [7,18]. Engineers cannot predict ocean wave power 
from random data. Researchers wish to replace numerical 
solutions because solving equations with intricate boundary 
conditions is time-consuming and expensive. AI estimates energy 
system production capacity fast and affordably. Hence, 
engineering AI researchers have developed algorithms to predict 
ocean wave energy systems' electrical power from effective 
parameters [19,20]. Zhenqing et al. [21] predicted ocean waves 
using machine learning and genetic algorithms. Converters are 
shown using wave periods, wave height, and ocean depth. 
Tuning converters solved industrial technological concerns. Li et 
al. [22] examined wave power parameters. Machine learning and 
an artificial neural network predicted the wave's free surface 
height and force. Mistakes showed a power capture efficiency-
parameter relationship. Gomez et al. [23] created a new 
software tool with a user-friendly guiding interface to predict 
output from two meteorological data sources using the latest 
machine learning methods. Butt et al. [24] introduced AI system 
forecasting. 24 h load prediction. These technologies improve 
maintenance by assessing error kinds. LSTM projected electricity 

demand by Cheng et al. [25]. LSTM improves forecasting by 
21.80% and 28.57%. Lin et al. [26] improved LSTM error-based 
power prediction. LSTM yielded the best results. Deep learning 
projected wave energy converter power for Ni et al. High-
frequency waves strongly affect modelling efficiency when 
comparing deep learning systems. 
III Materials and Methods 
The Dataset gathered from UCI's open data repository. Positions 
and absorbed power outputs from four actual wave scenarios off 
the southern coast of Australia make up this data set (Sydney, 
Adelaide, Perth and Tasmania). The CETO [1] model of totally 
submerged three-tether converter is used in this application. In 
a space-restricted setting, 16 WECs are strategically located. 
The issue is classified as a costly optimisation problem because 
the examination of each farm takes several minutes. 
Features Information: 

1. WECs position {X1, X2… X16; Y1, Y2… Y16} 
continuous from 0 to 566 (m). 
2. WECs absorbed power: {P1, P2... P16} 
3. Total power output of the farm: Powerall 
4. Location: Perth, Adelaide, Sydney, and Tasmania 

Methods: 
The following method are applied in this research work 

• Borrowed dataset 

• Data preprocessing 

• Apply for Ensemble machine learning 
algorithms: 

• Gradient Boosting Machine with Naïve Bayes 
(GBM with NB) 

• Stochastic Gradient Boosting with Naive 
Bayes(SGD with NB) 

• AB with NB(Ada with NB) 

• Extreme Gradient Boost with Naive 
Bayes(XGB with NB) 

• Light Gradient Boosting Machine  with Naive 
Bayes(LGBM with NB) 

• To get Optimal results 

• Find a best Model 
To produce an efficient result, these strategies were applied in 
python API. This study uses only 10% of the total dataset and 
uses tenfold cross validation for all categories. 
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Table 2: Performance of selected classifiers 

S.No Classifiers Accuracy Precision Recall F-Measure MCC Kappa 

1 AB with NB 85.75% 0.86 0.86 0.86 0.65 0.66 

2 XGB with NB 84.10% 0.84 0.84 0.83 0.56 0.55 

3 LGB with NB 83.85% 0.83 0.83 0.84 0.56 0.58 

4 GDM with NB 79.02% 0.81 0.8 0.79 0.54 0.54 

5 SGB with NB 85.00% 0.85 0.86 0.84 0.58 0.59 

 
The above table shows that the various selected ensemble 
classifiers. 
The AB with NB has an accuracy level of 85.75%, a precision 
value of 0.86, a recall value of 0.86, an F-Measure value of 0.86, 
an MCC value of 0.65 and a kappa statistic value of 0.66.  
The XGB with NB results in an accuracy level of 84.10%, a 
precision value of 0.84, a recall value of 0.84, an F-Measure 
value of 0.83, an MCC value of 0.56 and a kappa statistic value 
of 0.55.  

The LGBM with NB produces accuracy level 83.85%, a precision 
value 0.83, recall value 0.83, an F-Measure value 0.84,an MCC 
value 0.56 and a kappa statistic value 0.58. 
The GBM with NB produces a yield of 79.02% an accuracy, a 
precision value of 0.81, a recall of 0.80, an F-Measure of 0.79, 
an MCC of 0.54 and a kappa statistic of 0.54.  
The SGB with NB results in an accuracy level of 85%, a precision 
value of 0.86, a recall value of 0.86, an F-Measure value of 
0.84,an MCC value of 0.58 and a kappa statistic value of 0.59.  

  
Figure 2: Performance of Ensemble classifiers with their accuracies 

The above diagram shows that the accuracy performances of 
selected models.  The AB with NB has the greatest accuracy 
result of 85.75%. The GBM with NB produces the lowest accuracy 

result of 79.02%. The accuracy of the LGBM with NB, XGB with 
NB, and SGB with NB is 83.85%, 84.10%, and 85%, respectively. 
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Figure 3: Performance of Ensemble Classifiers with their Precision values 
The precision performances of selected models are depicted in 
the diagram above. The AB with NB produces the greatest 
precision result of 0.86. GBM with NB produces the lowest 

accuracy result of 0.81. The accuracy levels of the LGBM with 
NB, XGB with NB, and SGB with NB are 0.83, 0.84, and 0.85, 
respectively. 

 
Figure 4: Performance of Ensemble Classifiers with their Recall values 

The graph above depicts the recall performances of selected 
models. The AB with NB and SGB with NB produce the maximum 
recall of 0.86. GBM with NB produces the lowest recall result of 

0.80. The recall levels for the LGBM with NB and the Extreme 
GBM with NB are 0.83 and 0.84, respectively. 

 

 
Figure 5: Performance of Ensemble Classifiers with their F-Measure values 

The graph above depicts the F-Measure performances of selected 
models. The AB with NB has the greatest F-Measure result of 
0.86. The GBM with NB produces the lowest F-Measure result of 

0.79. The XGB with NB has an F-Measure of 0.83, whereas the 
LGB with NB and SGB with NB have the same value of 0.84. 
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Figure 6: Performance of Ensemble Classifiers with their MCC values 

The graphic above depicts the MCC performance of selected 
models. The AB with NB model has the highest MCC value of 
0.65. GBM with NB produces the lowest MCC result (0.54). The 
remainder of the models, such as the XGB with NB model and 

the Light Gradient Boosting Machine with NB Decision Trees 
model, have the same MCC value of 0.56. The MCC value for SGB 
with NB 0.58. 

  
Figure 7: Performance of Ensemble classifiers with their Kappa statistic values 

The graph above depicts the kappa value performances of 
selected models. The AB with NB model has the greatest kappa 
value of 0.66. The GBM with NB produces the lowest kappa 
result of 0.54. Other models with kappa values between 0.55 
and 0.59 are Extreme Gradient Boost with NB, Light Gradient 
Boosting Machine with NB, and Stochastic Gradient Boosting with 
NB. 

This work finds that the AB with NB has an F-Measure of 0.86, an 
MCC of 0.65, a kappa statistic of 0.66, a recall of 0.86, a 
precision of 0.86, and a precision of 0.86. The combined XGB 
and NB achieves an impressive 84.10% accuracy, 0.84 precision, 
0.84 recall, 0.83 F-Measure, 0.56 MCC, and 0.55 kappa statistic. 
Accuracy of 83.85%, precision of 0.83%, recall of 0.83%, F-
Measure of 0.84%, mean correlation coefficient of 0.56%, and 
kappa statistic of 0.58% are all generated by the LGBM with NB. 
Using NB, the GBM achieves a return of 79.02% accurate 
predictions, 0.81 precision, 0.80 recall, 0.79 F-Measure, 0.54 
MCC, and 0.54 kappa. Accuracy is at 85%, precision is 0.86, 
recall is 0.86, the F-Measure is 0.84, the MCC is 0.58, and the 
kappa statistic is 0.59 when using the SGB with NB. The AB with 
NB has the greatest accuracy result of 85.75%. a precision result 

of 0.86, a recall of 0.86, an F-Measure result of 0.86,  an MCC 
value of 0.65 and  a kappa value of 0.66.This model recommends 
the AB with NB compare with other models. 
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