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Computational methods hold great promise for mitigating the 

health and financial risks of drug development by predicting 
possible side effects before entering into the clinical trials. Several 

learning based methods have been proposed for predicting the side 

effects of drugs based on various features such as: chemical 
structures of drugs [25, 1, 23, 8, 19, 34, 17, 9, 2, 5], drug-protein 

interactions [35, 33, 8, 19, 34, 17, 37, 2, 15, 36], protein-protein 

interactions (PPI) [8, 9], activity in metabolic networks [38, 26], 

pathways, phenotype information and gene annotations [8]. In 
parallel to the above mentioned approaches, recently, deep 

learning models have been employed to predict side effects: (i) 

[31] uses biological, chemical and semantic information on drugs in 
addition to clinical notes and case reports and (ii) [4] uses various 

chemical fingerprints extracted using deep architectures to 

compare the side effect prediction performance. While these 
methods have proven useful for predicting adverse drug reactions 

(ADRs – used\ interchangeably with drug side effects), the features 

they use are solely based on external knowledge about the drugs 

(i.e., drug-protein interactions, etc.) and are not cell or condition 
(i.e., dosage) specific. To address this issue, Wang et al. (2016) 

utilize the data from the LINCS L1000 project [32]. This project 

profiles gene expression changes in numerous human cell lines after 
treating them with a large number of drugs and small-molecule 

compounds. By using the gene expression profiles of the treated 

cells, [32] provides the first comprehensive, unbiased, and cost-
effective prediction of ADRs. The paper formulates the problem as 

a multi-label classification task. Their results suggest that the gene 

expression profiles provide context-dependent information for the 

side-effect prediction task. While the LINCS dataset contains a 

total of 473,647 experiments for 20,338 compounds, their method 
utilizes only the highest quality experiment for each drug to 

minimize noise. This means that most of the expression data are 

left unused, suggesting a potential room for improvement in the 
prediction performance. Moreover, their framework performs 

feature engineering by transforming gene expression features to 

enrichment vectors of biological terms. In this work, we investigate 
whether the incorporation of gene expression data along with the 

drug structure data can be leveraged better in a deep learning 

framework without the need for feature engineering. In this study, 

we propose a deep learning framework, Deep Side, for ADR 
prediction. Deep Side uses only (i) in vitro gene expression profiling 

experiments (GEX) and their experimental meta data (i.e., cell line 

and dosage - META), and (ii) the chemical structure of the 
compounds (CS). Our models train on the full LINCS L1000 dataset 

and use the SIDER dataset as the ground truth for drug - ADR pair 

labels [13]. We experiment with five architectures: (i) a multi-layer 

perceptron (MLP), (ii) MLP with residual connections (Res MLP), (iii) 
multi-modal neural net- works (MMNN. Concat and MMNN. Sum), 

(iv) multi-task neural network (MTNN), and finally, (v) SMILES 

convolutional neural network (SMILES Conv). We present an 
extensive evaluation of the above-mentioned architectures and 

investigate the contribution of different features. Our experiments 

show that CS is a robust predictor of side effects. The base MLP 
model, which uses CS features as input, produces _11% macro-AUC 

and _2% micro- AUC improvement over the state-of-the-art results 

provided in [32], which uses both GEX (high quality) and CS 

features. The multi-modal neural network model, which uses CS, 
GEX and META features and uses summation in the fusion layer 

(MMNN. Sum) achieves 0:79 macro-AUC and 0:877 micro-AUC which 

is the best result among MLP based approaches. We also find out 
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that when the chemical structure features are fully utilized in a 

complex model like ours, it overpowers the information that is 

obtained from the GEX dataset. The Convolutional neural network 
that only uses the SMILES string representation of the drug 

structures achieves the best result among all the proposed 

architectures with provides 13:0% macro-AUC and 3:1% micro-AUC 

improvement over the state-of-the-art algorithm. Finally, 
inspecting the confident false positives predictions reveal side 

effects that are not reported in the ground truth dataset, but are 

indeed reported in the literature. Deep Side is implemented and 
released at http://github.com/OnurUner/DeepSide. 

2. LITERATURE SURVEY 

1) Drug Side Effect Prediction with Deep Learning Molecular 

Embedding in a Graph-of-Graphs Domain 
Abstract: Drug side effects (DSEs), or adverse drug reactions 

(ADRs), constitute an important health risk, given the 

approximately 197,000 annual DSE deaths in Europe alone. 
Therefore, during the drug development process, DSE detection is 

of utmost importance, and the occurrence of ADRs prevents many 

candidate molecules from going through clinical trials. Thus, early 
prediction of DSEs has the potential to massively reduce drug 

development times and costs. In this work, data are represented in 

a non-euclidean manner, in the form of a graph-of-graphs domain. 

In such a domain, structures of molecule are represented by 
molecular graphs, each of which becomes a node in the higher-

level graph. In the latter, nodes stand for drugs and genes, and arcs 

represent their relationships. This relational nature represents an 
important novelty for the DSE prediction task, and it is directly 

used during the prediction. For this purpose, the MolecularGNN 

model is proposed. This new classifier is based on graph neural 

networks, a connectionist model capable of processing data in the 
form of graphs. The approach represents an improvement over a 

previous method, called DruGNN, as it is also capable of extracting 

information from the graph-based molecular structures, producing 
a task-based neural fingerprint (NF) of the molecule which is 

adapted to the specific task. The architecture has been compared 

with other GNN models in terms of performance, showing that the 
proposed approach is very promising. 

2) Drug side effect prediction through linear neighborhoods and 

multiple data source integration 

Abstract: predicting drug side effects is a critical task in the drug 
discovery, which attracts great attentions in both academy and 

industry. Although lots of machine learning methods have been 

proposed, great challenges arise with boom of precision medicine. 
On one hand, many methods are based on the assumption that 

similar drugs may share same side effects, but measuring the drug-

drug similarity appropriately is challenging. One the other hand, 
multisource data provide diverse information for the analysis of 

side effects, and should be integrated for the high-accuracy 

prediction. In this paper, we tackle the side effect prediction 

problem through linear neighborhoods and multi-source data 
integration. In the feature space, linear neighborhoods are 

constructed to extract the drug-drug similarity, namely “linear 

neighborhood similarity”. By transferring the similarity into the 
side effect space, known side effect information is propagated 

through the similarity-based graph. Thus, we propose the linear 

neighborhood similarity method (LNSM), which utilizes single-

source data for the side effect prediction. Further, we extend LNSM 
to deal with multisource data, and propose two data integration 

methods: similarity matrix integration method (LNSM-SMI) and cost 

minimization integration method (LNSM-CMI), which integrate drug 
substructure data, drug target data, drug transporter data, drug 

enzyme data, drug pathway data and drug indication data to 

improve the prediction accuracy. The proposed methods are 
evaluated on the benchmark datasets. The linear neighborhood 

similarity method (LNSM) can produce satisfying results on the 

single-source data. Data integration methods (LNSM-SMI and LNSM-

CMI) can effectively integrate multi-source data, and outperform 
other state-of-the-art side effect prediction methods in the cross 

validation and independent test. The proposed methods are 

promising for the drug side effect prediction. 
3) Drug Side Effect Analyzer Using Machine Learning 

Abstract: People are dependent on medicinal drugs on one way or 

the other for every simple cause such as headache, cold etc. Every 

drug has a negative impact on a person's body. Some people are 

unaware of the side effects of the drugs and they consume it 

without prescription. Social network platforms such as twitter 
provide an opportunity for people to express themselves. Using 

twitter as the source of data, this paper aims to find the side 

effects of drugs with the help of machine learning algorithms.SVM 

(Support Vector Machine) algorithm is used for drug related 
classification with an accuracy of 75%.Sentiment analysis is 

performed using VADER (Valence Aware Dictionary for sentiment 

Reasoning) to handle negations, conjunctions and question marks 
present in the tweets. Keyword Extraction is performed using RAKE 

(Rapid Automatic Keyword Extraction) to get the side effects. 

4) Predicting Drug Side Effects Using Data Analytics and the 

Integration of Multiple Data Sources 
Abstract: The development of automated approaches employing 

computational methods using data from publicly available drugs 

datasets for the prediction of drug side effects has been proposed. 
This work presents the use of a hybrid machine learning approach 

to construct side effect classifiers using an appropriate set of data 

features. The presented approach utilizes the perspective of data 
analytics to investigate the effect of drug distribution in the 

feature space, categorize side effects into several intervals, adopt 

suitable strategies for each interval, and construct data models 

accordingly. To verify the applicability of the presented method in 
side effect prediction, a series of experiments were conducted. 

The results showed that this approach was able to take into 

account the characteristics of different types of side effects, 
thereby achieve better predictive performance. Moreover, 

different feature selection schemes were coupled with the 

modeling methods to examine the corresponding effects. 

Additionally, analyses were performed to investigate the task 
difficulty in terms of data distance and similarity. Examples of 

visualized networks of associations between drugs and side effects 

are also discussed to further evaluate the results. 
2.EXISTING SYSTMA  

drug-drug interaction (DDI) is defined as an association between 

two drugs where the pharmacological effects of a drug are 
influenced by another drug. Positive DDIs can usually improve the 

therapeutic effects of patients, but negative DDIs cause the major 

cause of adverse drug reactions and even result in the drug 

withdrawal from the market and the patient death. Therefore, 
identifying DDIs has become a key component of the drug 

development and disease treatment. In this study, an existing 

system, develops a method to predict DDIs based on the integrated 
similarity and semi-supervised learning (DDI-IS-SL). DDI-IS-SL 

integrates the drug chemical, biological and phenotype data to 

calculate the feature similarity of drugs with the cosine similarity 
method. The Gaussian Interaction Profile kernel similarity of drugs 

is also calculated based on known DDIs. A semi-supervised learning 

method (the Regularized Least Squares classifier) is used to 

calculate the interaction possibility scores of drug-drug pairs. In 
terms of the 5-fold cross validation, 10-fold cross validation and de 

novo drug validation, DDI-IS-SL can achieve the better prediction 

performance than other comparative methods. In addition, the 
average computation time of DDI-IS-SL is shorter than that of other 

comparative methods. Finally, case studies further demonstrate 

the performance of DDI-IS-SL in practical applications. 

DISADVANTAGES: 
• The complexity of data: Most of the existing machine learning 

models must be able to accurately interpret large and complex 

datasets to detect an accurate Drug Side Effect. 
• Data availability: Most machine learning models require large 

amounts of data to create accurate predictions. If data is 

unavailable in sufficient quantities, then model accuracy may 
suffer. 

• Incorrect labeling: The existing machine learning models are only 

as accurate as the data trained using the input dataset. If the data 

has been incorrectly labeled, the model cannot make accurate 
predictions. 

4.PROPOSED SYSTEM 

Multi-layer perception (MLP) Our MLP [22] model takes the 
concatenation of all input vectors and applies a series of fully-

connected (FC) layers. Each FC layer is followed by a batch 

normalization layer [10]. We use ReLU activation [16], and dropout 

http://github.com/OnurUner/DeepSide
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regularization [27] with a drop probability of 0:2. The sigmoid 

activation function is applied to the final layer outputs, which 

yields the ADR prediction probabilities. The loss function is defined 
as the sum of negative log- probabilities over ADR classes, i.e. the 

multi-label binary cross-entropy loss (BCE). An illustration of the 

architecture for CS and GEX features is given in this system. 

Residual multi-layer perceptron (ResMLP) The residual multi-layer 
perceptron (ResMLP) architecture is very similar to MLP, except 

that it uses residual-connections across the fully- connected layers. 

More specifically, the input of each intermediate layer is element-
wise added to its output, before getting processed by the next 

layer. Such residual connections have been shown to reduce the 

vanishing gradient problem to a large extend [7]. This effectively 

allows deeper architectures, therefore, potentially learning more 
complex and parameter-efficient feature extractors. Multi-modal 

neural networks (MMNN) The multi-modal neural network approach 

contains distinct MLP sub-networks where each one extract 
features from one data modality only. The outputs of these sub-

networks are then fused and fed to the classification block. For 

feature fusion, we consider two strategies: concatenation and 
summation. While the former one concatenates the domain-specific 

feature vectors to a larger one, the latter one performs element-

wise summation. By definition, for summation based fusion, the 

domain-specific feature extraction sub-networks have to be 
designed to produce vectors of equivalent sizes. We refer to the 

concatenation and summation based MMNN networks as 

MMNN.Concat and MMNN.Sum, respectively. Multi-task neural 
network (MTNN) our multitask learning (MTL) based architecture 

aims to take the side effect groups obtained from the taxonomy of 

ADReCS into account. For this purpose, the approach defines shared 

and task-specific MLP sub-network blocks. The shared block takes 
the concatenation of GEX and CS features as input and outputs a 

joint embedding. Each task-specific sub-network then converts the 

joint embedding into a vector of binary prediction scores for a set 
of inter-related side-effect classes. 

ADVANTAGES 

The proposed system implemented many ml classifies for testing 
and training on datasets. 

The proposed system developed Convolutional neural networks 

(CNN) which are known to provide a powerful way of automatically 

learning complex features in vision tasks to find an accurate 
accuracy on the datasets. 

SYSTEM ARCHITECTURE 

 
Fig 1: System Architecture 

 
5. UML DIAGRAMS 
1. CLASS DIAGRAM 

Class diagram is a static diagram. It represents the static view of an 

application. Class diagram is not only used for visualizing, 
describing, and documenting different aspects of a system but also 

for constructing executable code of the software application. Class 

diagram describes the attributes and operations of a class and also 
the constraints imposed on the system. The class diagrams are 

widely used in the modeling of object oriented systems because 

they are the only UML diagrams, which can be mapped directly 

with object-oriented languages. It is also known as a structural 

diagram. Class diagram contains • Classes • Interfaces • 

Dependency, generalization and association. 

 
Fig 5.1 shows the class diagram of the project 

1. USECASE DIAGRAM: 

Use Case Diagrams are used to depict the functionality of a system 

or a part of a system. They are widely used to illustrate the 
functional requirements of the system and its interaction with 

external agents (actors). In brief, the purposes of use case 

diagrams can be said to be as follows 

• Used to gather the requirements of a system. 
• Used to get an outside view of a system. 

• Identify the external and internal factors influencing the system.  

Use case diagrams commonly contains 
 • Use cases  

• Actors  

• Dependency, generalization and association relationships. 

 
Fig 5.2 Shows the Use case Diagram 

3. SEQUENCE DIAGRAM: 

A sequence diagram simply depicts interaction between objects in 
a sequential order i.e. the order in which these interactions take 

place. We can also use the terms event diagrams or event scenarios 

to refer to a sequence diagram. Sequence diagrams describe how 

and in what order the objects in a system function. Sequence 
diagrams are used to formalize the behavior of the system and to 

visualize the communication among objects. These are useful for 

identifying additional objects that participate in the use cases. 
These diagrams are widely used by businessmen and software 

developers to document and understand requirements for new and 

existing systems. 
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Fig 5.3 Shows the Sequence Diagram 

6. RESULTS 

Output Screens 

 

Fig6.1 To Run manage.py File 

To run the manage.py file to get the url after that to copy the url 

and paste into web browser and run to get the home page. 

 
Fig6.2 Remote User Profile 

In above screen shows the remote user profile. 

 

Fig6.3 ML Algorithms Accuracy 

To press the upload button it loads the dataset file and then 

preprocess the dataset after that apply the ml algorithm. The 

algorithms can train the dataset and produce the accuracy. 

 

Fig6.4 Bar chart Graph for ML Algorithms 

In the above screen shows Algorithm Accuracy in bar chart graph 

 

 
Fig6.5 Algorithms Accuracy in Line Chart Graph 

In above screen shows the ml algorithms accuracy in line chart 

graph. 

 
Fig6.6 Algorithms Accuracy in Pie Chart Graph  

In above screen shows the ml algorithms accuracy in pie chart 

graph. 
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Fig6.7 Prediction of  Deep Fake  Content 

After enter into the remote user login to click on predict button 

and then get the above page. 

  
The pharmaceutical drug development process is a long and 

demanding process. Unforeseen ADRs that arise at the drug 
development process can suspend or restart the whole 

development pipeline. Therefore, the a priori prediction of the side 

effects of the drug at the design phase is critical. In our Deep Side 

framework, we use context-related (gene expression) features 
along with the chemical structure to predict ADRs to account for 

conditions such as dosing, time interval, and cell line. The 

proposed MMNN model uses GEX and CS as combined features and 
achieves better accuracy performance compared to the models 

that only use the chemical structure (CS) finger- prints. The 

reported accuracy is noteworthy considering that we are only trying 

to estimate the condition-independent side effects. Finally, SMILES 
Conv model outperforms all other approaches by applying 

convolution on SMILES representation of drug chemical structure. 
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