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INTRODUCTION

For metric compact sets X there is a simple
topological classification of the spaces P(X) of all
probability measures. In the case of a finite 71 — point space
X = {n} the points (I of the space P(l’l) = Pn(l/l)

are convex linear combinations of Dirac measures:

u=mo0)+mo(l)+..+m_o(n-1)

Therefore, they are naturally identified with the points of the
(l’l —1) dimensional simplex (Tn_l . In this case, Dirac
5(1) are formed by the vertices of the simplex, and the masses
m[. placed at points I are the barycentric coordinates of the
measure [l . Thus, the compact set P(n) is affinely
homeomorphic to the simplex (Tn_l [1-2].

In the case of an infinite compact space X , the space

It is also known that any Zl -degree of a non-one-
point compact set K , the space of all probability measures
V4 V4
P(K 1) is homeomorphic to the Tikhonov cube 1 ,
V4 V4
P(K 1) =11 , I — segment [0,1] . Note, in
particular, that all these spaces are topologically homogeneous.

V4
A for spaces P(K 1) for T>Zl the situation is
different [3].
For an arbitrary compact set X and a measure

HE P(X), its support Supp(,u) is defined, which is

U=mo(x)+mo(x,)+..+mo(x,)

with finite supports, for each of which ml. > for some

n+1
I

P (X)={ueP,(X):|suppu|<n}.
Hence, the compact subspace Pf (X) is also the union of
Pf,n (X)

compacts those.

IDf (X) = Uj:lljf,n (X) . It is obvious that
Pf,n(X) < })n(X) and Pf(X) - })(u(X)

Obviously, for a metric compact set X and any
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P(X) is also a compact space [3]. Further, it, containing

simplices of an arbitrarily large number of dimensions, is infinite-
dimensional [4]. By Cayley's theorem, the convex compact set

c(X
P(X) c R %) is affinely embedded in fz
Consequently, by Keller's theorem, the compact set P(X) , as

an infinite-dimensional convex compact set lying in gz , is

X
homeomorphic to the Hilbert cube Q =71 0 [2]. On the other
hand, the space P(X) of all probability measures on a

compact set X s called the set of all regular Borel probability
measures on X , equipped with the weakest of the topologies
for which each functional jfu . C(X) —> R, which takes

the measure [l to ,Ll(U) (U is an open set in X)[S].

the smallest of the closed sets FcX for which

H(F) = p(X)

sup p(u) =(\(4: A= 4, e P(A)};
P(X)={ueP(X):|suppu|<n} -

the set of all measures ,Ll at most /1 supported,

Pw (X) = UZOZIPH (X) — the set of all probability

measures ,U with finite supports[4-5 ]. Recall that the space
Pf(X) [ P(X) consists of all probability measures [1]

neN, tesets P(X), P(X), P (X) are
closed in P(X)

Consequently, the subspace P (X') < P(X)
and P (X) is O— compact, everywhere dense in
P(X).

let P°(X) denote the set of all measures
L € P(X), the support of each of which lies in one of the

connected components of the space (compact space) X [2].

The closedness of the set PC (X) in the compact
set P(X) is quite
P(f)(Pc (X)) (@ Pc (Y) follows from the fact that

the functor PP , like any normal functor, preserves supports, i.e.

obvious. The inclusion




- supp(P(f)) () = f (suppp).

Thus, the subfunctor ])C of the functor P is
defined. An epimorphism fC—)I of a Cantor perfect set

C
onto an interval shows that the functor P~ does not clearly

preserve epimorphisms in the same way that PC * Pl , while

as Pc (n) =n-= Pl(l/l) Therefore, we get
Pr=Pp ﬂpc . PL=h ﬂpcmpn ’
P =P VB, B,(X)( P =F;.

For an infinite compact set X e Comp and a
normal or seminormal functor F Comp —> Comp of

infinite degree [1]. Let us accept the following notation[6]:

0 Fy(X)= F(X)\n _(X); ror n=1

we identify FV (X) ; FV] (X),
2)
F(X)={aeF(X): |Supp(a)| <n}

supp(a) denotes the support of the pointa d € F(X)

)

2 F,, (X) = F(X)\F,(X).

4)

SF(A)={aeF(X):Supp(a)ﬂA;t@ :
A+ and ACX},
5)

Fy(X) = F,(X)\F(X)n>kn>2;

6) Fw(X) - U;Fn(X);
) Fy (X)=F(X)\F,(X)
) F,,(X)=F,(X)\F,(X);

Recall that the topological space Y is called an absolute
(neighborhood) retract in the «class K (written

YGA(N)R(K), if YeK and for any

homeomorphism h, mapping Y onto a closed subset h(Y) of the
space X from the class K, the set h(Y) is a retract (neighborhood)
of the space X [7].

Recall that a topological space X s called a
manifold modeled on the space Y , ora Y — manifold [7], if
every point in the space X hasa neighborhood homeomorphic
to an open subset of the space X .

A Q -manifold is a separable metric space locally

Hilbert Q [7], where

homeomorphic to the cube

o=11]_[-1.11;
VVii = {(gj) S Q | gi =+] ] — th face of the Hilbert

Hilbert cube [81,
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o0

cube Q , BdQ:U IVV;i — is called the pseudo-
i=

boundary of the cube Q , and S:Q\BdQ— the

pseudo-interior of the cube Q . It is known that

S=11_ LD,

In the theory of infinite-dimensional manifolds, the

following objects play an important role: the Hilbert cube Q s

the separable Hilbert space gz’ Z — the linear hull of the

% 1
standard brick Q’ = [O —] in the Hilbert space
n=1t"? 2}1

62 , via fg or O denotes the linear subspace of the Hilbert

space fz , consisting of all points only a finite number of

coordinates of which is nonzero, and Qf is the subspace of the

Hilbert cube Q , consisting of only a finite number of points the

number of coordinates of which is different from zero.
By the Anderson-Kadets theorem [9], the Hilbert space

gz is homeomorphic to C [9]. From Bessaga-Pelczynski's results

it follows that Z is homeomorphic to rintQ and

o, fj;, Q‘f [9]. Here TiNt()  denotes the set
{x=(x,)€0|lx,|<t<1 for au neN} .

Further, it is obvious that VintQ ~ BdQ , which means it is
true: BdQ ~ Z .
It is known that the spaces Q ,Z and fz are

strongly infinite-dimensional, and the spaces fj; , O and

Qf are weakly infinite-dimensional and all these spaces are
homogeneous.

Definition [10]. A closed set A of space X is called VA
setin X if the identity mapping ldX of the space X can
be approximated arbitrarily

fX—>X\A4.

A countable union of Z -sets in X is called a
O—7 —setin X .
Following [9], a O — Z —set B of a Hilbert cube

Q is called a boundary set in Q (denoted by B(Q)) if

Q\B z€2' More generally, a boundary set in a Q -

closely by the mappings

manifold is a O — Z — set whose complement is a 62 -

manifold.
From the above it follows that the pseudo-boundary




BdQ of the Hilbert cube Q is its boundary set.

Let X be a topological space.

Aset A X iscalled homotopy dense in X [10]
if there is a homotopy h(x,t) . XX[O,I] —> X such
tat h(x,0)=id, ana H(X x(0,1]) C 4.

an Aset A X is homotopy negligible in X
if X\A is homotopy dense in X.

An embedding €. Y—>X i homotopy dense
(resp. homotopy negligible) if €(Y) is a homotopy dense set

(resp. homotopy negligible) in X [5].
Definition 1. A covariant functor

F: Comp — Comp is called normal [3] if the following

conditions are met: continuous; monomorphic; epimorphic; saves:
weight; intersections; prototypes; point and empty set;
Definition 2. The functor

F:Comp—)Comp is called [11] regular if the

following are satisfied: monomorphic; epimorphic, continuous,
preserving intersections and preimages.

Definition [2]. A normal subfunctor F of a functor
Pn is said to be locally convex if the subset F(n) of the
simplex Ez(n) is locally convex.

et F and (G be functors. A natural
transformation / :F —> G between us is the system of

mappings TX F —> G,TY ‘F > G, where X isa
space such that for any mapping f . X —> Y between the
spaces X and Y the following holds:
G(f)eTy =T, °F (/).

A functor F is called a subfunctor of a functor G
if there is a natural transformation T . G —> F such that

TX embedding for any X

Main part

For a continuous mapping f : X =Y between
the Tikhonov spaces X ad Y , a mapping
ﬂfﬂX—)ﬂY is defined, which satisfies the
conditions

F(BIF(BX)) c Fy(Y) 1)

J (supp(a)) = supp(F(f )(@)) @

where

Fy(X)={ae F(BX):supp(a) c X} )

ﬂX is the Stone Chekhov extension of the space X.
Forafunctor /' andanelement d € F(X) , the

support of a point Supp(a) is the intersection of all closed

sets of the space X such that A € F(A) e
supp.(a)= ﬂ{A cX:A4 is cosed and
aeF(X)}

Definition 3. A functor £ 1 Tych — Tych s
called compact (0" — compact) if £ (K) is compact (0" —

compact) for any space X e COWlp .
Comment 4, For any functor

F: COWlp —> Comp, the functor Fﬁ is compact, but
not every compact functor in TyCh is of type Fﬂ . As

examples, we can consider the functors PR and Pr of Radon
and T -additive probability measures, respectively (see [11]).

Returning to the F:Comp—)Comp

functors, we obviously have

a € F(supp(a)). (3)

If the functor F preserves preimages. then F preserves
supports [11], i.e.

J (supp(a) = supp(F(f )a)). @

The (1.4) property can be converted.

Proposition 5 [1]. Any functor in Comp is support-
preserving if and only if it is preimage-preserving.

From the definition of the functor F,b’ and the
property (4) it follows that

f(SuppFﬁ(X) (@)= SuppFﬁ(Y)Fﬂ(f)(a) ()
for any preimage-preserving functor

F: Comp —)COI’I’lp, Tikhonov spaces X and Y ,
continuous mapping f X —>Y. andace Fﬂ (X) .

For the category C we denote by O(C) and M(C) the
family of all objects C and the family of all morphisms C
respectively. Let G and F be functors in some category

C (- TOp . A natural transformation I :G —> F is a
i :G(X)>F(X) |

family of mappings

X e O(C) , such that

F(f)ei, =1, oG(f) (6)
for any f S M(C)
The mappings iX are called components of the

transformation l . A functor G is called a subfunctor of a




functor Fif there is a natural transformation 1 G —> F such
that all its components iX are embeddings. This natural

transformation of I is called the embedding of G into F. If

I: G —> F is an embedding, then (6) implies

G(f)=iy o F(f)oiy @)

Comment 7. Usually subfunctors arise in a fairly natural

way. For example, in the category Comp the functor ech of

subcontinuum hyperspaces is built into the functor exp of
hyperspaces of closed subsets from the very beginning. Let's
assume this is a standard situation. This means that the functor G
is a subfunctor of F if the natural transformation (embedding)

I: G —> F consists of identical embeddings, i.e. G(X) is a
subspace in F(X) for any space X. In this case, the condition (7) is
equivalent to the condition

F(fNG(X))cG(Y). ®)

Definition 8. Let F}{ -subfunctor of the functor F in
Comp, defined as follows. A-priory. E{(@) = F(@) For
a non-empty compactum X, Fk(X) is the image of the
mapping 7Z-F,X,k’ For a mapping f X > Y, F;{(f)
is the restriction of F(f) to E{(X) . Let
f : C(k,X) —> C(k,Y) denote the mapping that

takes é: onto the composition f o é: . It's easy to see that
Ty j °© S idF({k}) =F(f)o Tx k ©)

F(OE X)) c F(Y)

Therefore EC is a functor. Clear. E{ is a subfunctor of F with

unit embedding F;{(X) (- F(X) for an arbitrary

compact set X.
A functor Fis called a degree functor k (they write degF

= k) if F;C(X) = F(X) for any compact set X , and
E{_l (X) * F(X) for some X[3].

Proposition 9[11]. For any continuous functor F and
compact set X we have

F(X)={aeF(X): |Supp(a)| <k}.

The media definition and properties (3) imply
Proposition 10[13]. For a functor F, a compact space X
and a closed subset A in X we have

F(A)={ae F(X):supp(a) C A}.

Proposition 11[13]. Let F be a functor in Tych, A be a closed

subset of X, d € F(X) and Supp(a) cA . Then
F(f)(a) = for any mapping fX—)X such
that f | A=id,

Proposition 12[14]. Let F be a regular functor in Comp,

Therefore,
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and G its regular subfunctor. Then

G(A)=G(X) JF(A)

for any compact set X and its closed subset A.

From this definition of a carrier we get

Proposition 13[14]. Let F be a functor in Comp, and G
its subfunctor. Then

SUPPp(x)(@) C SUppg x,(a)
for any compact set Xand d € G(X) .

Proposition 14[14]. Let F be a regular functor in
Comp, G its regular subfunctor. Then

SuppF(X)(a) = SuppG(X)(a)
for any compact set Xand d € G(X) .

From propositions 9 and 14 it follows
Proposition 15[15]. Let F be a regular functor of

degree < k in Comp, and let G be its regular subfunctor. Then

degGSk.

From the equality (7) we immediately obtain
Proposition 16[15]. Let F be a continuous functor in

Comp, and G its continuous subfunctor. Then Gk (@ F;C for
any natural number k .

Proposition 17[15]. Let F be a regular functor in the
category Comp, and let G be a regular subfunctor in F. Then

G,(X)=G(BX) F,(X)

for any Tikhonov space X.
Proposition 18[11]. Let F - be a functor in the category

Comp, and G be its subfunctor. Then Gﬁ is a subfunctor of

F 5
About closed subfunctors and their sums
Definition 19[16]. Let F be a functor acting in the
category lc TOp , and let G be a subfunctor of F. A functor G

is called a closed subfunctor of a functor F if for any

X € O(C) the space G(X) is a closed subspace of
F(X).

The next statement is trivial.

Proposition 20[16]. In the category Comp, each
subfunctor is closed.

From Proposition 8 and Proposition 20 we get

Corollary 21[6]. For every continuous functor

F:COWlp —>C0mp and a natural number K , the

functor F}{ is a closed subfunctor of F.
Returning to the category Tych, for a Tikhonov space X,
a continuous functor I : COWlp —> COWlp and a

positive integer k, we set
ﬂ(X)ZﬂF,ﬁ’k(C(k),X)XF(k). (10)
We also put

EC(Q)ZF(@) (11)

Let us now denote the restriction of ﬂF,,BX,k to




Ck)xF(k) vy 7y -

continuous map, then
F(pg)F (X)) c F(Y),

taking into account the equality (9) to display f = ﬂg .

Therefore the setting
F(g)=F.(Bg)| F(X),
we obtain the mapping E{(g) : EC(X) —> E{(Y) .

Thus, we have defined a covariant functor

F_:Tych — Tych,

If gX—)Y is a

The equality (12) gives
Corollary 23[17]. For

F:Comp—>C0mp and a natural number k, the

every continuous functor

functor (F}‘T ),B is a closed subfunctor of Fﬁ .
Comment 24[17].

definitions of the functor F}( [1] and Basmanov [3] coincide for

Proposition 9 states that the

any continuous functor Fin Comp . However, we will use both
definitions depending on the situation and denote them Fk B
and Fk p respectively. As for the equality (10), we can assume

that it defines the functor (Fﬂ )k,b . Thus, the equality (12) can

be written in the form

(Fp)ip =) s = (Fp) g0

Proposition 25[17]. If G is a regular subfunctor of a

(13)

regular functor F in Comp, then G,b’ is a closed subfunctor of

F,.

Definition 26. [11]. A functor F is said to be finitely
open if the set F}{(k + 1) is open in F(k + 1) for any
natural number k. The dual of this definition states that

F(k%—l)\F;((k—i—l) is closed in F(k-i-l)

Comment 27[17]. As an example of a finitely open
functor, we can take any finitary functor (or finite functor) F, i.e.

a functor F such that F(k) is finite for any positive number k.

In particular, the hyperspace functor exp[3] is finite and therefore
finitely open.

Proposition 28[11,17]. If F is a regular finitely open
functor, and G is its regular subfunctor, then G is finitely open.

Recall that an epimorphism f X oY issaidto
be inductively closed if there is a closed subset A in X such that
f(A) =Y and f |A is a closed mapping.

Definition  29[16-17]. A

. is said to be projectively
F:Comp— Comp s said b jectivel

continuous  functor

inductively closed (p.i.c.) if the mapping 7Z'F Xk is inductively

closed for any Tikhonov space X and a positive integer k.
Theorem 30[16-17]. Every continuous finitely open
functor F preserving the empty set and preimages is a p.i.c.
functor.
Corollary 31[17]. Every finitary normal functor, in
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this extends the functor F;C . Comp —> Comp to the

category Tych.
The following statement follows from Proposition 9.

Proposition 22. [17]. If ' : Comp — Comp
is a continuous functor, then F;{ ZTyCh —)Tych is a

subfunctor of the functor Fﬂ , and

F(X) = F,(XO[ JF(8X).

(12)

particular, the functor Gka , is a p.i.c.-functor.

Let FTyCh—)TyCh be a functor and

F" < F,I’lECz).We say that F is a union of Fn(i.e.

F=J F". « FO={J F'X) o

any Tikhonov space X[17].
Definition 32[17]. The functor

F: TyCl’l —> TyCh is called O -p.i.c. functor if
o0

F= U O(Fn)ﬁ, where each Fn is a p.i.c-functor of
n=

finite degree.
Example 33[17]. Taking into account Remark 27 and

0

Theorem 30, the functor expwzu 16Xpn is the
n=

functor O -p.i.c.
The next statement is obvious.

o0
Proposition 34[17]. If F = OF " where
e

n
each F is a functor O - p.i.c., then Fis a functor O -p.i.c.

Recall that P : Comp —> Comp denotes the

functor of Borel regular probability measures. This functor is
normal [1,2,4]. According to Proposition 22 and Remark 24, we

will denote (5,) 5 by B

Theorem 35. The functor B{

for any natural number k.
Comment 36. In fact, we have proven more: the functor

is a O -p.i.c.-functor

Pk is the union of its normal finitely open subfunctors (B{n ),8

We will say that the O -p.i.c.-functor F has degree k if
o0
in the representation F = OFn (from Definition
n=
n
32[17]) each functor F has degree < k .
Proposition 37[17]. Let Gl and G2 be normal

subfunctors of the normal functor F Comp —> COI’I’Zp

degree Sk Then their

G = G G is a normal functor of degree < k .
1 2

Proposition 38. Let G19G2 be normal subfunctors

of finite intersection

of the normal functor F in Comp. Then




(G Gy = (GG,
Theorem 39[11,17]. Let F be a normal subfunctor of Pk in

Comp. Then Fﬂ isa O -p.i.c.-functor.

Definition 40[18]. A normal space X is said to be weakly
countable-dimensional if X is the union of a countable family of

closed subsets Xi such that dlle < 00 for each i.

The next two statements are trivial.

Proposition 41[18]. Every closed subspace of a weakly
countable-dimensional space is a weakly countable-dimensional
space.

Proposition 42[18]. Every normal space that is the
union of a countable family of its closed weakly countable-
dimensional subspaces is weakly countable-dimensional.

A completely regular space X is called a cirrus (

P —space) [19] if there exists a countable family Un of

coverings of the space X by sets covered in its Stone-Cech
0

extension  betaX such that ﬂ 13b (X,Un) cX
n=

foreach X € X .
A space X s called a Z — space[19] if there

exists a O — discrete family N and covered C consisting
of closed countably compact sets such that if C & C and

CCU,then Cc F cU forsome FEN,where
U is open in X

A space that hasa O — locally finite network is called
a O — space[19]. those. X is a countable sum of locally

finite families E , each of which is a network of the space X

A T; — space X is called a stratifiable (or lace)

space (in short, a G-space) [19] if each open set U (- X

can be associated with a sequence {Un ne N} open
subsets in such a way that the following conditions are satisfied:

a) UnCU for I’ZEN; b)
U{Un:neN}=U ;o it UcCV , then

UnCVn forall 71.

Theorem 43[11]. Let F-p.i.c. be a functor of finite
degree transforming finite sets into finite-dimensional compact
sets, let X be a weakly countable-dimensional space, and let X
belong to one from the following classes:

each

a) Z— paracompact spaces; b) p-paracompact

spaces;
c) O -paracompact spaces; d) stratified spaces;
e) metrizable spaces.

Then Fﬂ(X) is a weakly countable-dimensional

space.
Corollary 44[11]. Let F be a normal finitary functor of

finite degree, in particular, the functor eka , X be a weakly

countable-dimensional space, and let X belongs to one of the
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following classes:

a) Z— paracompact spaces; b) p-paracompact

spaces;
c) O -paracompact spaces; d) stratified spaces;
e) metrizable spaces.
Then Fﬁ (X) is a weakly countable-dimensional
space.

Corollary 45[11].. Let F be a normal finitary functor of
finite degree, in particular, the functor , X be a weakly countable-
dimensional space, and let X belong to one of the following
classes:

a) Z— paracompact spaces; b) p-paracompact

spaces;
c) O -paracompact spaces; d) stratified spaces;
e) metrizable spaces.
Then is a weakly countable-dimensional space.
Recall that for a normal

F: Comp —)Comp , by Fw they denote the O -

functor

compact defined as:

Fw (X) = UleEc (X) for any Tikhonov space X.

subfunctor F,B R

0
Thus, Fa) = k=1F;f'
Theorem 46[17].
dimensional space that is

metrizable) or stratifiable M , then PQ(X) is weakly

countable-dimensional.

Proposition 41 and Theorem 46 give

Corollary 47[17]. If X is a weakly countable-
dimensional space that is either p-paracompact (in particular,

metrizable) or stratifiable, then F(X) is a weakly countable-

If X is a weakly countable-
p-paracompact (in particular,

dimensional space for an arbitrary closed subfunctor F c Pa)

Applications
Theorem [2]. Every locally convex subfunctor F ofa

functor Pn preserves the property of the space to be an
A(N)R -compact space and the property of a compact space
tobea Q — manifold or a Hilbert brick.

Theorem [4]. Let X be a weakly countable-

dimensional A(N)R(M) space, and let F— be a

subfunctor of P

n Then

locally convex

F(X)e AN)RM) .
P(X)e AN)R(M).
Corollary [4]. Separable spaces IDJ((X) ,

P;(X), Pf,n (X) and Pfcn (X) is metrizable by a

complete metric if and only if X itself is separable and
metrizable by a complete metric.

Corollary [8]. Let A be a Z — set of a Q—

particular,

variety. Then the set A has a neighborhood homeomorphic to




an open subset of the space Q .

From this corollary we can conclude that if a Z — set
A is connected in Q , then OA is a neighborhood of the

cube Q and OA, Q those. any connected Z — set
A of a Hilbert cube Q has a closed neighborhood
homeomorphic to the cube Q itself.

Lemma [5-6]. Let AcC Q be a Z — set and
O_A 5 Q If a & —is close to ldQ , where O(A)

is convex, then there is a retraction 7" . Q —> Q , & —close

to ldQ

Has the following

Lemma [5-6]. For any compact set X , if the mapping

fX—)P(X) E — is close to idX , then
l//OP(f)P(X)—)P(X) then
idP(X)’ where l//Pz(X) —)P(X) - retraction of

the monad [6] .

& — close and

P, P P, P,

Theorem [5-6]. Functors
Pn s PnC and F - preserves the property of the layer in the

mappings being Q -, Z -,

F — are locally convex subfunctors of the functor Pn .

P, P,

and €/2‘ — manifolds, where

Corollary [5-6]. Functors Pf, P;

Pw Pnc and I -preserves a) f{- varieties. In particular,
P,(t)~ P (15) = P, (¢]) =
~ P ()~ B = B () = F(t]) = 1]

; where F — is a locally convex subfunctor of the functor Rq

b) Functors Pf, P(fﬁ, P Pc P, PnC

fn’ n

and F - preserves E — varieties. In particular,

PQ)=P(Q)=P, (D)=
~FL,Q)=PQI=EQI~FQ )=

, where F — locally convex subfunctors of the functor Bl .

Theorem [5]. Let F —be a continuous functor with

finite supports preserving separable A(N)R — spaces. Then

preserves E — varieties.

Theorem [5]. For functors F= P;n

’ Pf"n) Pf
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R ]); and locally convex subfunctors of the functor Pn the

following pairs are homeomorphic:

(F(O)LF(S)); (0.9)

(F(Q),BdQ); (Q,BdQ).
Note wspaces P(X)\P(X)
P(X)\P, (X)) and P(X)\P.(X) are
Q — variety for any infinite compact set X and any

neN . in the particular case P(Q)\ P (Q) ,
PO\, (Q), P(O\P(Q)— s a O~
variety. A subspace P(X)\ P (X) is G_ —set in
P(X).

For an infinite compact set X and a functor

GXpX , the subspace CXpV(X) and expv”(X)

that the

are open in expX, €Xxp . (X) is open in €Xpn(X) s
expw(X) is a countable union of compacta in expX , i.e
expw(X) — O — compact. On the other hand,
expw(X) is dense everywhere in expX. a eXpr(X) is
5 -subspace of the space expX, the subspace Fam (X) is

an open set in Fw(X)

The normal subfunctor of the functor f; isthe 11 —
n
th symmetric degree functor SP . The component TX of the

natural transformation 1 : SPn —)Pn is defined by the
equality

n

25

i=1

1
T [(xl,xz, =;

From the results of the main part it follows that the functor Pn

and all its subfunctors are O — plC functors.
n
Consequently, SP is

O'—p.i.C. functor, i.e. functors Pf, Pfc, Pf 0o Rf,
]);,n, Pw, Paf and F'— are O'—plC

the functor also a
functors,
where F' isa locally convex subfunctor of the functor }31 .
Note that the spaces KJ; and Z are everywhere
dense subsets of the Hilbert cube Q and are preserved by the

F , then F(f};) and F(Z)

reduced functors




homeomorphic to the Hilbert cube Q i.e. F(fg) = Q

and F(Z), Q, where F s one of the following

c C
functors: locally convex functors , BI s Ijn , an s Pf',n’

SPn, Pf and ])fc

On the other hand, for these functors F , by Theorem

sseseel,  F(C)=F(Q)=Q  holds and
F(Q)=F(Q)=0.
Therefore, the following holds:

F(O)\F(t}); S

FIO\F(Q); S.

For any compact set X' we have:

SP"(X) < SP"(X) = P.(X).
Theorem 1. For any infinite compact set X and for any
ne N, the subspace P(X) \ SP" (X) is homotopy
dense in P(X)

Proof. Let X' be an infinite compact space. In this

case P(X), Q We fix 71 € N . Take the measure
Uy = mlé'x1 +..+ mké'xk

where

k
k>n,,y m =1 m. >0 ,
i=1 ! !

m, #=m Ni# j.

construct the homotopy

We
h(,t): P(X)x[0,1]— P(X) with a flat slope
h(p,t)=(1-u+1- 1

For t=0 ,
h(,0) = (1=0)u+0- 11y = 1t
h(p,0)= idP(X)

For t>0 ,
h(u,t)=(1-t)pu+t-pu, € SP"(X) , so how
Supph(L,t) consists of than (71 +1) — points. This
means that the subspace (X )\ SP" (X)) is homotopy
densein P(X).

Since the compact set SPn(X) is closed in

those.

P(X) , it follows that for an infinite compact set X and a

natural number 72 € N the subspace P(X) \ SP” (X)
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is open in P(X) i.e. P(X)\SP”(X) are Q—
varieties. On the other hand, by virtue of Theorem [13], for any

infinitely compact set X and for a natural number 71 € N,
the compact set SPn (X) isa Z —setin P(X) .

For an infinite compact set X we set

SP(U (X) = Uj:ISPn (X) . In this case we have

Theorem 2. For any infinite compact set X and any
neN , the

P(X)\SP"(X) is a O — manifold and a subspace
SP)(X)—0—Z —setin P(X).

SP'(Q)=0 and
SP"(X)e A(N)R, it X € A(N)R . Note that
SP(X)c P,(X) . For the functor SP" and the

Hilbert cube () the following holds:

1) SP'(Q)— is a O~ manifold, since the
subspace SP, (Q) isopenin SP"(Q);

y SPL(0)=SP(Q)\SP'(Q) e
O — varieties, since for k <n SP"(Q)\ SP*(Q)
isopenin SP"(Q).

Theorem 3. For any infinite compact set X and for
any N e N, the subspace Pam (X) is homotopy dense in

P (X).

Proof. Let X be an infinite compact set and

neN . Note that the space P (X) € AR , since
P (X) isconvexand locally convex. We construct the desired
homotopy  A1(4,2) 1 P (X)x[0,1] > P (X) flat
h(4,0) = (1= )+ phy where ity By, (X).
those. |Supp,uo| =2n.

natural number subspace

It is known that

If t=0 ) then
h(1,0)=(1-0)u+0-p, = those.
h(y,0)=idpw(x).

If t>0 ) then
W) =(=p - € BX) . swce

Supph(,u,t) contains more than (n + 1) distinct
points. those. h(y(O,l]) S Pam (X) -

From this Theorem 3 it follows that the compact set

R1(X) is a Z — set in Pa)(X) . those. the space




Pa) (X) isa O — Z —set. We noted that for any compact

set X the following holds: SPn (X) (@ Pn(X) .

From Theorem 3 it follows

Corollary 1. For any infinite compact set X and for

any 1 € N, the compact set SPn (X) is a Z —set in
P,(X).

Corollary 2. For any infinite compact set X , the
subspace SPa)(X) isa O —/ —setin PQ(X)

Using the given properties of O — plC — functors

and theorem [10] (Problem 16 § 1.2), the following can be easily
proven.

Theorem 4. For O — plC functors I : Pn ,
Pnc,me ,Pfc,n,SPn ,SPQ,PG), Pas and locally convex

subfunctors Pn holds:
aF (1]); O;

aF(Q); 0.

where @ (X ) is the one-point Alexandrov compactification

of the space F(X) .

n
For a functor of symmetric degree SP we have:
1. For the segment X = [0,1] the space
SP" (X = ]) ; 0" s a standard simplex of dimension
N ; those. SPn([O,l]) ~ O'n ;
2 3
2. 18 X = S is a sphere in R , then

2 .
SP”(S ); CP”ZS(J projective  (complex)  space

dimensions 71 ;

2
3. If X S’— is a circle in R , then
2 1 1 3
SP (S ), eszS ; Mz— Miyobius sheet in R ;
2
X=S'— circle in R , then

3 4
exp3 '; S — sphere of dimension 3 in R , Where

4. If

’
exp3S is a set consisting of no more than
2 2
5.1f X isacirclein R, then eXpCS’; B
2 i
is a closed circle in R , Where echS consists of

' 2
connected continua of the circle S (- R .
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