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ABSTRACT 
 

 

This note studies the geometric, topological and dimensional properties of the . .p i c − -functor and its subfunctors in 

the category of Tych −Tychonov spaces and continuous self-maps. It is shown that . .p i c − . Functors preserve 

weakly countable-dimensional spaces,  –paracompact,  − paracompact, p − paracompact, metrizable and 

stratifiable spaces. 
 

Considering a number of subfunctors F  of the functor P  of probability measures that are . .p i c − .– functors, 

their various topological and dimensional properties are studied, properties in the category of Top − topological spaces 

and continuous mappings into themselves.  
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For metric compact sets X  there is a simple 

topological classification of the spaces ( )P X  of all 

probability measures. In the case of a finite n− point space 

={ }X n  the points   of the space ( ) = ( )nP n P n  

are convex linear combinations of Dirac measures: 
 

0 1 1= (0) (1) ... ( 1)nm m m n   −+ + + −  

Therefore, they are naturally identified with the points of the 

( 1)n −  dimensional simplex 
1n −

. In this case, Dirac 

( )i  are formed by the vertices of the simplex, and the masses 

im  placed at points i  are the barycentric coordinates of the 

measure  . Thus, the compact set ( )P n  is affinely 

homeomorphic to the simplex 
1n −

[1-2]. 

In the case of an infinite compact space X , the space 

( )P X  is also a compact space [3]. Further, it, containing 

simplices of an arbitrarily large number of dimensions, is infinite-
dimensional [4]. By Cayley's theorem, the convex compact set 

( )( ) C XP X R  is affinely embedded in 
2

. 

Consequently, by Keller's theorem, the compact set ( )P X , as 

an infinite-dimensional convex compact set lying in 
2

, is 

homeomorphic to the Hilbert cube 
0=Q I


[2]. On the other 

hand, the space ( )P X  of all probability measures on a 

compact set X  is called the set of all regular Borel probability 

measures on X , equipped with the weakest of the topologies 

for which each functional : ( )uf C X R→ , which takes 

the measure   to ( )U  (U  is an open set in X ) [5]. 

It is also known that any 
1  -degree of a non-one-

point compact set K , the space of all probability measures 

1( )P K


 is homeomorphic to the Tikhonov cube 
1I


, 

1 1( ) =P K I
 

, I − segment [0,1] . Note, in 

particular, that all these spaces are topologically homogeneous. 

A  for spaces 
1( )P K


 for 
1>   the situation is 

different [3]. 

For an arbitrary compact set X  and a measure 

( )P X , its support ( )supp   is defined, which is 

the smallest of the closed sets F X  for which 

( ) = ( )F X   i.e. 

sup ( ) = { : = , ( )}p A A A P A  ; 

( ) = { ( ) : }nP X P X supp n   −

the set of all measures   at most n  supported, 

=1
( ) = ( )nn

P X P X


− the set of all probability 

measures   with finite supports[4-5 ]. Recall that the space 

( ) ( )fP X P X  consists of all probability measures [1] 

 
 

1 1 2 2= ( ) ( ) ... ( )n nm x m x m x   + + +  

with finite supports, for each of which 

1
i

n
m

n


+
 for some 

;i  

 
 

, ( ) ={ ( ) : }.f n fP X P X supp n    

Hence, the compact subspace ( )fP X  is also the union of 

compacts , ( )f nP X . those. 

,=1
( ) = ( )f f nn

P X P X


. It is obvious that 

, ( ) ( )f n nP X P X  and ( ) ( )fP X P X . 

Obviously, for a metric compact set X  and any 

n N , the sets ( )nP X , ( )fP X , , ( )f nP X  are 

closed in ( )P X . 

Consequently, the subspace ( ) ( )P X P X   

and ( )P X  is  −  compact, everywhere dense in 

( )P X . 

Let ( )cP X  denote the set of all measures 

( )P X , the support of each of which lies in one of the 

connected components of the space (compact space) X [2]. 

The closedness of the set ( )cP X  in the compact 

set ( )P X  is quite obvious. The inclusion 

( )( ( )) ( )c cP f P X P Y  follows from the fact that 

the functor P , like any normal functor, preserves supports, i.e. 

INTRODUCTION 



 
11 

. 
1( ( ))( ) = ( )supp P f f supp  . 

Thus, the subfunctor 
cP  of the functor P  is 

defined. An epimorphism :f C I→  of a Cantor perfect set 

onto an interval shows that the functor 
cP  does not clearly 

preserve epimorphisms in the same way that 1

cP P , while 

as 1( ) = = ( )cP n n P n . Therefore, we get 

c c

f fP P P , ,

c c

f n f nP P P P , 

c c

n nP P P , ( ) =c cP X P P  . 

For an infinite compact set X Comp  and a 

normal or seminormal functor :F Comp Comp→  of 

infinite degree [1]. Let us accept the following notation[6]: 

1) ( ) = ( ) \ ( )
F

F X F X X ; For =1n  

we identify 
1( ) ( )F X F X ; ; 

2) 

( ) = { ( ) : ( ) }nF X a F X supp a n  . 

( )supp a  denotes the support of the point a ( )a F X
; 

3) ( ) = ( ) \ ( )n nF X F X F X
. 

4) 

( ) ( )= { : ( )FS A a F X supp a A  , 

A  and }A X ; 

5) 

( ) = ( ) \ ( ), > , 2nk n kF X F X F X n k n  ; 

6) ( )
=1

= ( )nn
F X F X



; 

7) ( ) = ( ) \ ( )F X F X F X 
; 

8) ( ) = ( ) \ ( )n nF X F X F X  ; 

Recall that the topological space Y is called an absolute 
(neighborhood) retract in the class K  (written 

( ) ( ),Y A N R K  if Y K  and for any 

homeomorphism h, mapping Y onto a closed subset h(Y) of the 
space X from the class K, the set h(Y) is a retract (neighborhood) 
of the space X [7]. 

Recall that a topological space X  is called a 

manifold modeled on the space Y , or a Y − manifold [7], if 

every point in the space X  has a neighborhood homeomorphic 

to an open subset of the space X . 

A Q -manifold is a separable metric space locally 

homeomorphic to the Hilbert cube Q [7], where 

=1
= [ 1,1] ;ii

Q

−  Hilbert cube [8], 

= {( ) | = 1i j iW g Q g    j − th face of the Hilbert 

cube Q , 
=1

= ii
BdQ W

  − is called the pseudo-

boundary of the cube Q , and = \S Q BdQ − the 

pseudo-interior of the cube Q . It is known that 

=1
= ( 1,1)ii

S

− . 

In the theory of infinite-dimensional manifolds, the 

following objects play an important role: the Hilbert cube Q , 

the separable Hilbert space 
2

, − the linear hull of the 

standard brick 
=1

1
= [0, ]

2nn
Q


   in the Hilbert space 

2
, via 2

f
 or   denotes the linear subspace of the Hilbert 

space 
2

, consisting of all points only a finite number of 

coordinates of which is nonzero, and 
fQ  is the subspace of the 

Hilbert cube Q , consisting of only a finite number of points the 

number of coordinates of which is different from zero. 
By the Anderson-Kadets theorem [9], the Hilbert space 

2
 is homeomorphic to C [9]. From Bessaga-Pelczynski's results 

it follows that  is homeomorphic to rintQ  and 

2

f fQ ; ; [9]. Here rintQ   denotes the set 

{ = ( ) | < <1n nx x Q x t  for all }n N . 

Further, it is obvious that rintQ BdQ , which means it is 

true: BdQ  . 

It is known that the spaces Q ,  and 
2

 are 

strongly infinite-dimensional, and the spaces 2

f
,   and 

fQ  are weakly infinite-dimensional and all these spaces are 

homogeneous. 

Definition [10]. A closed set A of space X is called Z  

-set in X  if the identity mapping 
Xid  of the space X  can 

be approximated arbitrarily closely by the mappings 

: \f X X A→ . 

A countable union of Z -sets in X is called a 

Z − − set in X . 

Following [9], a Z − − set B  of a Hilbert cube 

Q  is called a boundary set in Q  (denoted by ( )B Q ) if 

2\ .Q B   More generally, a boundary set in a Q -

manifold is a Z − − set whose complement is a 
2 −

manifold. 
From the above it follows that the pseudo-boundary 
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BdQ  of the Hilbert cube Q  is its boundary set. 

Let X  be a topological space. 

A set A X  is called homotopy dense in X [10] 

if there is a homotopy ( , ) : [0,1]h x t X X →  such 

that ( ,0) = Xh x id  and ( (0,1])h X A  . 

An A  set A X  is homotopy negligible in X  

if \X A  is homotopy dense in X . 

An embedding :e Y X→  is homotopy dense 

(resp. homotopy negligible) if ( )e Y  is a homotopy dense set 

(resp. homotopy negligible) in X [5]. 

Definition 1. A covariant functor 

:F Comp Comp→  is called normal [3] if the following 

conditions are met: continuous; monomorphic; epimorphic; saves: 
weight; intersections; prototypes; point and empty set; 

Definition 2. The functor 

:F Comp Comp→  is called [11] regular if the 

following are satisfied: monomorphic; epimorphic, continuous, 
preserving intersections and preimages. 

Definition [2]. A normal subfunctor F  of a functor 

nP  is said to be locally convex if the subset ( )F n  of the 

simplex ( )nP n  is locally convex. 

Let F  and G  be functors. A natural 

transformation :T G→F  between us is the system of 

mappings : , :X YT G T G→ →F F , where X  is a 

space such that for any mapping :f X Y→  between the 

spaces X  and Y  the following holds: 

( ) = ( )X YG f T T fF . 

A functor F  is called a subfunctor of a functor G  

if there is a natural transformation :T G→F  such that 

XT  embedding for any X . 

Main part 

For a continuous mapping :f X Y→  between 

the Tikhonov spaces X  and Y , a mapping 

:f X Y  →  is defined, which satisfies the 

conditions 
 
 

( )( ( )) ( )F f F X F Y    (1) 

 
 
 

( ( )) ( ( )( ))f supp a supp F f a  (2) 

 where 

( ) = { ( ) : ( ) }F X a F X supp a X   , 

X  is the Stone Chekhov extension of the space X . 

For a functor F  and an element ( )a F X , the 

support of a point ( )supp a  is the intersection of all closed 

sets of the space X  such that ( )a F A  i.e. 

( ) = { :Fsupp a A X A  is closed and 

( )}a F X  

Definition 3. A functor :F Tych Tych→  is 

called compact ( − compact) if ( )F K  is compact ( −

compact) for any space X Comp . 

Comment 4. For any functor 

:F Comp Comp→ , the functor F  is compact, but 

not every compact functor in Tych  is of type F . As 

examples, we can consider the functors 
RP  and P  of Radon 

and  -additive probability measures, respectively (see [11]). 

Returning to the :F Comp Comp→  

functors, we obviously have 
 
 

( ( )).a F supp a  (3) 

 
If the functor F preserves preimages. then F preserves 

supports [11], i.e. 
 
 

( ( ) = ( ( )( )).f supp a supp F f a  (4) 

 
The (1.4) property can be converted. 

Proposition 5 [1]. Any functor in Comp  is support-

preserving if and only if it is preimage-preserving. 

From the definition of the functor F  and the 

property (4) it follows that 
 
 

( ) ( )( ( ) = ( )( )F X F Yf supp a supp F f a 
 (5) 

 for any preimage-preserving functor 

:F Comp Comp→ , Tikhonov spaces X  and Y , 

continuous mapping :f X Y→ . and ( )a F X . 

For the category C we denote by O(C) and M(C) the 
family of all objects C and the family of all morphisms  C 
respectively. Let G and F be functors in some category 

C Top . A natural transformation :i G F→  is a 

family of mappings : ( ) ( )Xi G X F X→ , 

( )X O C , such that 

 
 

( ) = ( )X YF f i i G f  (6) 

 for any ( )f M C . 

The mappings 
Xi  are called components of the 

transformation i . A functor G  is called a subfunctor of a 
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functor F if there is a natural transformation :i G F→  such 

that all its components 
Xi  are embeddings. This natural 

transformation of i  is called the embedding of G into F. If 

:i G F→  is an embedding, then (6) implies  

 

( ) ( )1= Y XG f i F f i−
 (7) 

 
Comment 7. Usually subfunctors arise in a fairly natural 

way. For example, in the category Comp the functor exp
c

of 

subcontinuum hyperspaces is built into the functor exp of 
hyperspaces of closed subsets from the very beginning. Let's 
assume this is a standard situation. This means that the functor G 
is a subfunctor of F if the natural transformation (embedding) 

:i G F→  consists of identical embeddings, i.e. G(X) is a 

subspace in F(X) for any space X. In this case, the condition (7) is 
equivalent to the condition  

 

( )( ( )) ( ).F f G X G Y  (8) 

 

Definition 8. Let 
kF -subfunctor of the functor F in 

Comp, defined as follows. A-priory. ( ) = ( )kF F  . For 

a non-empty compactum X, ( )kF X  is the image of the 

mapping , ,F X k . For a mapping :f X Y→ , ( )kF f  

is the restriction of ( )F f  to ( )kF X . Let 

: ( , ) ( , )f C k X C k Y→  denote the mapping that 

takes   onto the composition f  . It's easy to see that  

 

, ({ }) ,= ( )Y k F k X kf id F f   (9) 

 

Therefore, ( )( ( )) ( )k kF f F X F Y . 

Therefore 
kF  is a functor. Clear. 

kF  is a subfunctor of F with 

unit embedding ( ) ( )kF X F X  for an arbitrary 

compact set X. 
A functor F is called a degree functor k (they write degF 

= k) if ( ) = ( )kF X F X  for any compact set X , and 

1( ) ( )kF X F X−   for some X[3]. 

Proposition 9[11]. For any continuous functor F and 
compact set X we have  

 ( ) = { ( ) : ( ) }.kF X a F X supp a k   

The media definition and properties (3) imply 
Proposition 10[13]. For a functor F, a compact space X 

and a closed subset A in X we have  

 ( ) ={ ( ) : ( ) }.F A a F X supp a A   

Proposition 11[13]. Let F be a functor in Tych, A be a closed 

subset of X, ( )a F X  and ( )supp a A . Then 

( )( ) =F f a a  for any mapping :f X X→  such 

that | = Af A id . 

Proposition 12[14]. Let F be a regular functor in Comp, 

and G its regular subfunctor. Then  

 ( ) = ( ) ( )G A G X F A  

for any compact set X and its closed subset A. 
From this definition of a carrier we get 
Proposition 13[14]. Let F be a functor in Comp, and G 

its subfunctor. Then  

 ( ) ( )( ) ( )F X G Xsupp a supp a  

for any compact set X and ( )a G X . 

Proposition 14[14]. Let F  be a regular functor in 
Comp, G its regular subfunctor. Then  

 ( ) ( )( ) = ( )F X G Xsupp a supp a  

for any compact set X and ( )a G X . 

From propositions 9 and 14 it follows 
Proposition 15[15]. Let F be a regular functor of 

degree k  in Comp, and let G be its regular subfunctor. Then 

degG k . 

From the equality (7) we immediately obtain 
Proposition 16[15]. Let F be a continuous functor in 

Comp, and G its continuous subfunctor. Then 
k kG F  for 

any natural number k . 

Proposition 17[15]. Let F be a regular functor in the 
category Comp, and let G be a regular subfunctor in F. Then  

 ( ) = ( ) ( )G X G X F X   

for any Tikhonov space X. 
Proposition 18[11]. Let F - be a functor in the category 

Comp, and G be its subfunctor. Then G  is a subfunctor of 

F . 

About closed subfunctors and their sums 
Definition 19[16]. Let F be a functor acting in the 

category ! Top , and let G be a subfunctor of F. A functor G 

is called a closed subfunctor of a functor F if for any 

( )X O C  the space ( )G X  is a closed subspace of 

( )F X . 

The next statement is trivial. 
Proposition 20[16]. In the category Comp, each 

subfunctor is closed. 
From Proposition 8 and Proposition 20 we get 
Corollary 21[6]. For every continuous functor 

:F Comp Comp→  and a natural number k , the 

functor 
kF  is a closed subfunctor of F. 

Returning to the category Tych, for a Tikhonov space X, 

a continuous functor :F Comp Comp→  and a 

positive integer k, we set  
 

, ,( ) = ( ( ), ) ( ).k F kF X C k X F k   (10) 

 
We also put  
 

( ) = ( ).kF F   (11) 

 

Let us now denote the restriction of , ,F X k  to 



 
14 

( ) ( )C k F k  by , ,F X k . If :g X Y→  is a 

continuous map, then  

 ( )( ( )) ( ),k kF g F X F Y   

taking into account the equality (9) to display =f g . 

Therefore the setting  

 ( ) = ( ) | ( ),k kF g F g F X  

we obtain the mapping ( ) : ( ) ( )k k kF g F X F Y→ . 

Thus, we have defined a covariant functor  

 : ,kF Tych Tych→  

this extends the functor :kF Comp Comp→  to the 

category Tych. 
The following statement follows from Proposition 9. 

Proposition 22. [17]. If :F Comp Comp→  

is a continuous functor, then :kF Tych Tych→  is a 

subfunctor of the functor F , and  

 

( ) = ( ) ( ).k kF X F X F X   (12) 

 

The equality (12) gives 
Corollary 23[17]. For every continuous functor 

:F Comp Comp→  and a natural number k, the 

functor ( )kF   is a closed subfunctor of F . 

Comment 24[17]. Proposition 9 states that the 

definitions of the functor 
kF  [1] and Basmanov [3] coincide for 

any continuous functor F in Comp . However, we will use both 

definitions depending on the situation and denote them ,kF   

and ,k bF  respectively. As for the equality (10), we can assume 

that it defines the functor ,( )k bF . Thus, the equality (12) can 

be written in the form  
 

, , ,( ) = ( ) = ( ) .k b k b k bF F F    (13) 

 
Proposition 25[17]. If G is a regular subfunctor of a 

regular functor F in Comp, then G  is a closed subfunctor of 

F . 

Definition 26. [11]. A functor F is said to be finitely 

open if the set ( 1)kF k +  is open in ( 1)F k +  for any 

natural number k. The dual of this definition states that 

( 1) \ ( 1)kF k F k+ +  is closed in ( 1)F k + . 

Comment 27[17]. As an example of a finitely open 
functor, we can take any finitary functor (or finite functor) F, i.e. 

a functor F such that ( )F k  is finite for any positive number k. 

In particular, the hyperspace functor exp[3] is finite and therefore 
finitely open. 

Proposition 28[11,17]. If F is a regular finitely open 
functor, and G is its regular subfunctor, then G is finitely open. 

Recall that an epimorphism :f X Y→  is said to 

be inductively closed if there is a closed subset A in X such that 

( ) =f A Y  and |Af  is a closed mapping. 

Definition 29[16-17]. A continuous functor 

:F Comp Comp→  is said to be projectively 

inductively closed (p.i.c.) if the mapping , ,F X k  is inductively 

closed for any Tikhonov space X and a positive integer k. 
Theorem 30[16-17]. Every continuous finitely open 

functor F preserving the empty set and preimages is a p.i.c. 
functor. 

Corollary 31[17]. Every finitary normal functor, in 

particular, the functor expk , is a p.i.c.-functor. 

Let :F Tych Tych→  be a functor and 

,n

clF F n   . We say that F is a union of (nF i.e. 

=0
= ),n

n
F F



 if 
=0

( ) = ( )n

n
F X F X



 for 

any Tikhonov space X[17]. 
Definition 32[17]. The functor 

:F Tych Tych→  is called  -p.i.c. functor if 

=0
= ( )n

n
F F 



, where each 
nF  is a p.i.c-functor of 

finite degree. 
Example 33[17]. Taking into account Remark 27 and 

Theorem 30, the functor 
=1

=exp expnn



 is the 

functor  -p.i.c. 

The next statement is obvious. 

Proposition 34[17]. If 
=0

= n

n
F F



, where 

each 
nF  is a functor  - p.i.c., then F is a functor  -p.i.c. 

Recall that :nP Comp Comp→  denotes the 

functor of Borel regular probability measures. This functor is 
normal [1,2,4]. According to Proposition 22 and Remark 24, we 

will denote ( )kP   by 
kP . 

Theorem 35. The functor 
kP  is a  -p.i.c.-functor 

for any natural number k. 
Comment 36. In fact, we have proven more: the functor 

kP  is the union of its normal finitely open subfunctors ( )nkP 

. 

We will say that the  -p.i.c.-functor F has degree k if 

in the representation 
=0

= n

n
F F



 (from Definition 

32[17]) each functor 
nF  has degree k . 

Proposition 37[17]. Let 
1G  and 

2G  be normal 

subfunctors of the normal functor :F Comp Comp→  

of finite degree k . Then their intersection 

1 2=G G G  is a normal functor of degree k . 

Proposition 38. Let 
1 2,G G  be normal subfunctors 

of the normal functor F in Comp. Then 
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 1 2 1 2( ) ( ) = ( )G G G G    

Theorem 39[11,17]. Let F be a normal subfunctor of 
kP  in 

Comp. Then F  is a  -p.i.c.-functor. 

Definition 40[18]. A normal space X is said to be weakly 
countable-dimensional if X is the union of a countable family of 

closed subsets 
iX  such that dim <iX   for each i. 

The next two statements are trivial. 
Proposition 41[18]. Every closed subspace of a weakly 

countable-dimensional space is a weakly countable-dimensional 
space. 

Proposition 42[18]. Every normal space that is the 
union of a countable family of its closed weakly countable-
dimensional subspaces is weakly countable-dimensional. 

A completely regular space X  is called a cirrus (

p − space) [19] if there exists a countable family 
nU  of 

coverings of the space X  by sets covered in its Stone–Cech 

extension betaX  such that 
=1

3 ( , )b nn
X U X


  

for each x X . 

A space X  is called a − space[19] if there 

exists a  − discrete family N  and covered C  consisting 

of closed countably compact sets such that if c C  and 

C U , then C F U   for some F N , where 

U  is open in X . 

A space that has a  − locally finite network is called 

a  − space[19]. those. X  is a countable sum of locally 

finite families 
iF , each of which is a network of the space X

. 

A 
1T −  space X  is called a stratifiable (or lace) 

space (in short, a G-space) [19] if each open set U X  

can be associated with a sequence { : }nU n N  open 

subsets in such a way that the following conditions are satisfied: 

a) nU U  for each n N ; b) 

{ : } =nU n N U ; c) if U V , then 

n nU V  for all n . 

Theorem 43[11]. Let F-p.i.c. be a functor of finite 
degree transforming finite sets into finite-dimensional compact 
sets, let X be a weakly countable-dimensional space, and let X 
belong to one from the following classes: 

a) − paracompact spaces; b) p-paracompact 

spaces; 

c)  -paracompact spaces; d) stratified spaces; 

e) metrizable spaces. 

Then ( )F X  is a weakly countable-dimensional 

space. 
Corollary 44[11]. Let F be a normal finitary functor of 

finite degree, in particular, the functor expk , X be a weakly 

countable-dimensional space, and let  X belongs to one of the 

following classes: 

a) −  paracompact spaces; b) p-paracompact 

spaces; 

c)  -paracompact spaces; d) stratified spaces; 

e) metrizable spaces. 

Then ( )F X  is a weakly countable-dimensional 

space. 
Corollary 45[11].. Let F be a normal finitary functor of 

finite degree, in particular, the functor , X be a weakly countable-
dimensional space, and let X belong to one of the following 
classes: 

a) −  paracompact spaces; b) p-paracompact 

spaces; 

c)  -paracompact spaces; d) stratified spaces; 

e) metrizable spaces. 
Then is a weakly countable-dimensional space. 
Recall that for a normal functor 

:F Comp Comp→ , by F  they denote the  -

compact subfunctor F , defined as: 

=1
( ) = ( )kk

F X F X



 for any Tikhonov space X. 

Thus, 
=1

= kk
F F



. 

Theorem 46[17]. If X is a weakly countable-
dimensional space that is p-paracompact (in particular, 

metrizable) or stratifiable M , then ( )P X  is weakly 

countable-dimensional. 
Proposition 41 and Theorem 46 give 
Corollary 47[17]. If X is a weakly countable-

dimensional space that is either p-paracompact (in particular, 

metrizable) or stratifiable, then ( )F X  is a weakly countable-

dimensional space for an arbitrary closed subfunctor F P
. 

Applications 

Theorem [2]. Every locally convex subfunctor F  of a 

functor 
nP  preserves the property of the space to be an 

( )A N R -compact space and the property of a compact space 

to be a Q − manifold or a Hilbert brick. 

Theorem [4]. Let X  be a weakly countable-

dimensional ( ) ( )A N R M  space, and let F −  be a 

locally convex subfunctor of 
nP . Then 

( ) ( ) ( )F X A N R M . In particular, 

( ) ( ) ( )nP X A N R M . 

Corollary [4]. Separable spaces ( )fP X , 

( )c

fP X , , ( )f nP X  and , ( )c

f nP X  is metrizable by a 

complete metric if and only if X  itself is separable and 

metrizable by a complete metric. 

Corollary [8]. Let A  be a Z − set of a Q −

variety. Then the set A  has a neighborhood homeomorphic to 
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an open subset of the space Q . 

From this corollary we can conclude that if a Z − set 

A  is connected in Q , then OA  is a neighborhood of the 

cube Q  and OA Q; . those. any connected Z − set 

A  of a Hilbert cube Q  has a closed neighborhood 

homeomorphic to the cube Q  itself. 

Lemma [5-6]. Let A Q  be a Z − set and 

OA Q; . If OA   − is close to Qid , where ( )O A  

is convex, then there is a retraction :r Q Q→ ,  − close 

to Qid . 

Has the following 

Lemma [5-6]. For any compact set X , if the mapping 

: ( )f X P X→   − is close to 
Xid , then 

( ) : ( ) ( )P f P X P X →  then  − close and 

( )P Xid , where 
2: ( ) ( )P X P X → – retraction of 

the monad [6] . 

Theorem [5-6]. Functors fP , 
c

fP , ,f nP , ,

c

f nP , 

nP , 
c

nP  and F – preserves the property of the layer in the 

mappings being Q − , − , and 2

f −  manifolds, where 

F −  are locally convex subfunctors of the functor 
nP . 

Corollary [5-6]. Functors fP , 
c

fP , ,f nP , ,

c

f nP , 

nP , 
c

nP  and F –preserves a) 2

f
- varieties. In particular, 

2 2 , 2( ) ( ) ( )f c f f

f f f nP P P  

, 2 2 2 2 2( ) ( ) ( ) ( )c f f c f f f

f n n nP P P F    

; where F −  is a locally convex subfunctor of the functor 
nP

; 

b) Functors fP , 
c

fP , ,f nP , ,

c

f nP , 
nP , 

c

nP  

and F – preserves − varieties. In particular, 

,( ) ( ) ( )c

f f f nP P P    
, ( ) ( ) ( ) ( )c c

f n n nP P P F        
, where F −  locally convex subfunctors of the functor 

nP . 

Theorem [5]. Let F − be a continuous functor with 

finite supports preserving separable ( )A N R − spaces. Then 

preserves − varieties. 

Theorem [5]. For functors ,= c

f nF P , ,f nP , fP

, 
c

fP  and locally convex subfunctors of the functor 
nP  the 

following pairs are homeomorphic: 
 

 ( )( ), ( ) ( , )F Q F S Q S;  

 

 ( )( ), ( , ).F Q BdQ Q BdQ;  

Note that the subspaces ( ) \ ( )nP X P X , 

,( ) \ ( )f nP X P X  and ( ) \ ( )fP X P X  are a 

Q − variety for any infinite compact set X  and any 

n N . In the particular case ( ) \ ( )nP Q P Q , 

,( ) \ ( )f nP Q P Q , ( ) \ ( )fP Q P Q −  is a Q −

variety. A  subspace ( ) \ ( )P X P X  is G − set in 

( )P X . 

For an infinite compact set X  and a functor 

expX , the subspace ( )exp X


 and ( )exp n
X


 

are open in expX, 
n ( )kexp X  is open in ( )expn X , 

( )exp X
  is a countable union of compacta in expX , i.e. 

( )exp X


− − compact. On the other hand, 

( )exp X
  is dense everywhere in expX. a ( )exp X

  is 

a F -subspace of the space expX, the subspace ( )nF X  is 

an open set in ( )F X . 

The normal subfunctor of the functor 
nP  is the n−

th symmetric degree functor 
nSP . The component 

XT  of the 

natural transformation : n

nT SP P→  is defined by the 

equality 
 

  1 2

=1

1
( , ,..., ) = ,

n

X n x
i

i

T x x x
n

  

From the results of the main part it follows that the functor 
nP  

and all its subfunctors are . . .p i c −  functors. 

Consequently, the functor 
nSP  is also a 

. . .p i c −  functor, i.e. functors fP , 
c

fP , ,f nP , 
c

nP , 

,

c

f nP , P , 
cP  and F −  are . . .p i c − - functors, 

where F  is a locally convex subfunctor of the functor 
nP . 

Note that the spaces 2

f
 and   are everywhere 

dense subsets of the Hilbert cube Q  and are preserved by the 

reduced functors F , then 2( )fF  and ( )F   is 
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homeomorphic to the Hilbert cube Q  i.e. 2( )fF Q  

and ( )F Q ; , where F  is one of the following 

functors: locally convex functors , 
nP , 

c

nP , ,f nP , ,

c

f nP , 

nSP , fP  and 
c

fP . 

On the other hand, for these functors F , by Theorem 

5.5[6]-5.8[6], 2( ) = ( ) =fF F Q Q  holds and 

( ) = ( ) =F F Q Q . 

Therefore, the following holds: 

2( ) \ ( )fF Q F S;  

 

 ( ) \ ( ) .F Q F S ;  

For any compact set X  we have: 

 

 ( ) ( ) ( ).n n

nSP X SP X P X   

Theorem 1. For any infinite compact set X  and for any 

n N , the subspace ( ) \ ( )nP X SP X  is homotopy 

dense in ( )P X . 

Proof. Let X  be an infinite compact space. In this 

case ( )P X Q; . We fix n N . Take the measure 

0 1
1

= ...x k x
k

m m  + + , where 

=1
> , , =1

k

ii
k n m , > 0im , 

,i jm m i j   . 

We construct the homotopy 

( , ) : ( ) [0,1] ( )h t P X P X  →  with a flat slope 

0( , ) = (1 )h t t t  − +   

For = 0t , 

0( ,0) = (1 0) 0 =h    − +  . those. 

( )( ,0) = P Xh id  

For > 0t , 

0( , ) = (1 ) ( )nh t t t SP X  − +   , so how 

( , )supph t  consists of than ( 1)n + − points. This 

means that the subspace ( ) \ ( )nP X SP X  is homotopy 

dense in ( )P X . 

Since the compact set ( )nSP X  is closed in 

( )P X , it follows that for an infinite compact set X  and a 

natural number n N  the subspace ( ) \ ( )nP X SP X  

is open in ( )P X  i.e. ( ) \ ( )nP X SP X  are Q −
varieties. On the other hand, by virtue of Theorem [13], for any 

infinitely compact set X  and for a natural number n N , 

the compact set ( )nSP X  is a Z − set in ( )P X . 

For an infinite compact set X  we set 

=1
( ) = ( )n

n
SP X SP X


. In this case we have 

Theorem 2. For any infinite compact set X  and any 

natural number n N , the subspace 

( ) \ ( )nP X SP X  is a Q − manifold and a subspace 

( )nSP X Z − − − set in ( )P X . 

It is known that ( ) =nSP Q Q  and 

( ) ( ) ,nSP X A N R  if ( )X A N R . Note that 

( ) ( )SP X P X  . For the functor 
nSP  and the 

Hilbert cube Q  the following holds: 

1) ( )nSP Q −  is a Q − manifold, since the 

subspace ( )nSP Q  is open in ( )nSP Q ; 

2) ( ) = ( ) \ ( )n n k

kSP Q SP Q SP Q  are 

Q − varieties, since for <k n  ( ) \ ( )n kSP Q SP Q  

is open in ( )nSP Q . 

Theorem 3. For any infinite compact set X  and for 

any n N , the subspace ( )nP X  is homotopy dense in 

( )P X . 

Proof. Let X  be an infinite compact set and 

n N . Note that the space ( )P X AR  , since 

( )P X  is convex and locally convex. We construct the desired 

homotopy ( , ) : ( ) [0,1] ( )h t P X P X   →  flat 

0( , ) = (1 )h t t t  − +  , where 
0 2 ( )nP X  . 

those. 0 = 2supp n . 

If = 0t , then 

0( ,0) = (1 0) 0 =h    − +  . those. 

( )( ,0) = P Xh id


 . 

If > 0t , then 

0( , ) = (1 ) ( )nh t t t P X  − +   , since 

( , )supph t  contains more than ( 1)n +  distinct 

points. those. ( (0,1]) ( )nh P X  . ¦ 

From this Theorem 3 it follows that the compact set 

( )nP X  is a Z − set in ( )P X . those. the space 
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( )P X  is a Z − − set. We noted that for any compact 

set X  the following holds: ( ) ( )n

nSP X P X . 

From Theorem 3 it follows 

Corollary 1. For any infinite compact set X  and for 

any n N , the compact set ( )nSP X  is a Z − set in 

( )P X . 

Corollary 2. For any infinite compact set X , the 

subspace ( )SP X  is a Z − − set in ( )P X . 

Using the given properties of . . .p i c − − functors 

and theorem [10] (Problem 16 §  1.2), the following can be easily 

proven. 

Theorem 4. For . . .p i c −  functors :F nP ,

c

nP , ,f nP , ,

c

f nP ,
nSP ,SP ,P , 

cP  and locally convex 

subfunctors 
nP  holds: 

 

 2( ) ;faF Q;  

 

 ( ) .aF Q ;  

where ( )aF X  is the one-point Alexandrov compactification 

of the space ( )F X . 

For a functor of symmetric degree 
nSP  we have: 

1. For the segment = [0,1]X  the space 

( = )n nSP X I ;  is a standard simplex of dimension 

n ; those. ([0,1])n nSP  ; 

2. If 
2=X S  is a sphere in 

3R , then 

2( )n nSP S CP isa; projective (complex) space 

dimensions n ; 

3. If X  S − is a circle in 
2R , then 

2 1 1

22
( ) expSP S S M −; ;  Miyobius sheet in 

3R ; 

4. If =X S − circle in 
2R , then 

3

3
exp S S −; sphere of dimension 3 in 

4R  , where 

3exp S  is a set consisting of no more than 

5. If X  is a circle in 
2R , then 

2
expcS B ;  

is a closed circle in 
2R , where exp

c
S  consists of 

connected continua of the circle 
2S R  . 
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