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ABSTRACT 
 

Heart diseases cause greater mortalities globally which can be reduced by detecting them in their early stages where 

Clinical Decision Support Systems (CDSS) have been designed. Healthcare organizations use Hybrid Convolutional 

Neural Network (HCNN) algorithms to determine a patient's risk of dying or being hospitalized from heart failure. 

However, because of a max-pool operation, a convolutional neural network operates much more slowly. If the computer 

lacks a powerful GPU, CNN's consume longer times during training as they have several layers. This work presents an 

efficient model for predictions of cardiac illnesses. Preprocessing is initially carried out using min-max normalization. 

Principal Component Analysis (PCA) is used in Dimensionality Reduction.  Hybrid Fuzzy Convolution Neural Network 

(HFCNN), based on optimized modified chicken swarm, is used to identify cardiac disorders. This work’s experimental 

outcomes demonstrate the suggested model’s higher degrees of accuracy in identifying cardiac illnesses.   
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Introduction  
Heart diseases include cardiovascular diseases (CVD) that remain 
the top most causes of death and accounts for almost 30% of 
global mortalities and it is predicted that the figures would cross 
22 millions by 2030 where at least 121.5 million persons in the 
country—or over half of all adults—are afflicted by 
cardiovascular diseases (CVDs) according to American Heart 
Association’s forecast. These disorders rank within the top three 
in Korea where 45% of deaths in 2018 were due to heart diseases 
[Bertsimas et al 2021; Singh and Kumar 2020].  
Heart diseases are disorders which plaque the arterial wall and 
impede blood flows causing heart attacks or strokes. Their 
causes include poor diets, no or very reduced physical activities, 
and excessive alcohol or tobacco consumptions. Adopting good 
daily habits, such as reducing salts in food, having more of 
vegetables and fruits, regular exercises and quitting alcohol and 
tobacco, can progressively reduce one's risk of developing heart 
disease [Shanmugasundaram et al 2018; Sultana et al 2016].  
Identifying high-risk individuals for heart diseases early utilizing 
prediction models to reduce mortality rates and improve 
decision-making for extra CVD preventions and treatments are 
advised [Barik et al 2020]. Clinicians may evaluate patients’ risks 
for heart diseases and prescribe appropriate drugs to control 
risks using predictions of CDSS [Ashri et al 2021]. Studies have 
demonstrated the use of CDSS in multiple areas including 
improve clinical decisions and preventive healthcare [Rani et al 
2021; Lakshmanarao et al 2021].  
Clinical decisions using machine learning (ML) have recently 
been used in the healthcare industry, where prior studies have 
used Multilayer Perceptrons (MLP), Back propagation Neural 

Networks (BPNN), and Chaos Firefly algorithms to assist in heart 
disease predictions based on individual data. Handcrafted 
characteristics are employed in the field of ML. Handcrafted 
features, on the other hand, are manual, low-level, and 
susceptible to limitations, such as the need for human-defined 
criteria that need subject-matter expertise, in contrast to 
automated features. 
A risk model was developed for addressing the aforementioned 
issues with the current work. The probabilities of heart related 
deaths or hospitalizations for patients in a major health 
maintenance organization utilizing HFCNN algorithms. However, 
because of a maxpool operation, a convolutional neural network 
operates much more slowly. If the computer lacks a powerful 
GPU, CNN's consume longer times during training as they have 
several layers. This work presented an efficient model for the 
prediction of cardiac illnesses in order to prevent this issue. This 
work’s principal contributions are detailed below: 

➢ Data normalizations using min/max normalizations are 
executed in preprocessing steps. 

➢ During the dimensionality reduction step, PCA   is 
utilized to do dimensionality reduction. 

➢ During the diagnosis stage, heart disease detection is 
done using HFCNN based on modified chicken swarm 
optimization. 

1. Literature review  
Fitriyani et al [2020] suggested CDSS based Heart disease 
prediction model (HDPM) where XGBoost predicted CVDs using 
hybrid Synthetic Minority Over-sampling Technique-Edited 
Nearest Neighbor (SMOTE-ENN) for balanced data distributions 
and Density-Based Spatial Clustering of Applications with Noise 
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(DBSCAN) for eliminating outliers. The study used Stat log and 
Cleveland datasets for assessing their suggested model’s efficacy 
when compared to prior studies and other models which 
included naive bayes (NB), logistic regression (LR), multilayer 
perceptron (MLP), support vector machine (SVM), decision tree 
(DT), and random forests (RF). With accuracy rates of 95.90% 
and 98.40% for Cleveland and Stat log datasets, the suggested 
model outperformed other current models. Furthermore, their 
Heart Disease CDSS (HDCDSS) prototype assisted physicians in 
determining heart disorder statuses of patients or subjects based 
on their present states. Consequently could help in early 
interventions for cardiac diseases. 
Repaka et al [2019] concentrated on identifying heart diseases 
using prior data with their Smart Heart Disease Prediction (SHDP) 
model where NB to anticipated heart disease risks. Technological 
progress lead to notable surges in online mobile based health 
technologies and used common formats for gathering necessary 
data. Patients’ risks of heart disorders were assessed using their 
medical profiles including blood pressures, cholesterol levels, 
ages, blood sugar levels, etc. The acquired attributes were input 
for categorization and prediction of heart diseases using NB. Two 
parts of the dataset were separated: training (80%) and testing 
(20%) where the recommended solution included the following 
steps: obtaining datasets, simplifying user registration and login 
(via an application), and categorizing data using NB, generating 
predictions, and securely sending data using AES. The study 
employed data mining techniques to anticipate heart illness to 
clarify and suggest several knowledge abstraction strategies. 
Their findings show that the present diagnostic technique 
accurately predicts heart disease risk factors. 
Karayılan and Kılıç [2017] suggested a back-propagation 
algorithm-based A technique for predicting cardiac disease using 
artificial neural networks. Neural networks (NNs) were trained 
using back propagations for predicting presence/absence of 
heart diseases, obtaining 95% accuracy. The neural network 
received 13 clinical characteristics as input. 
Saxena and Sharma [2016] designed a framework to predict 
patients' risk levels based on specified health parameters. This 
study's key contribution was to help non-specialist clinicians 
make educated judgments about r patients' heart disease risks. 
Original, trimmed, duplicate-free, categorized, sorted, and 
polish rule categories were produced by the suggested technique 
and framework’s arrangement accuracies evaluated 
performances. The work’s experimental results showed the 
framework could improve the accuracy of risk predictions in 
CVDs. 
Nandy et al [2023] suggested an innovative healthcare system for 
the prediction of cardiovascular illness using Swarm based ANNs 
called Swarm-ANN. The suggested Swarm-ANN method starts by 
randomly creating a certain number of NNs and uses that number 
to train and evaluate the framework based on how consistently 
the NNs provide results. Additionally, weight alterations are 
applied to the NN populations during two phases of training, and 

the weight modifications are made using heuristics and 
distributing altered global ideal weights across the neurons 
resulting in better precision of cardiovascular disease 
predictions. Using a benchmark dataset as a guide, their 
proposed Swarm-ANN approach predicts cardiovascular illness 
with 95.78% accuracy. Their simulation findings demonstrated 
that, for a range of performance matrics, Swarm-ANN 
outperformed traditional learning methods. 
Gupta et al [2019] suggested a framework for machine 
intelligence (MIFH) to identify heart diseases. Features from UCI 
heart disease Cleveland dataset were identified for training ML 
prediction models where MIFH factorized mixed data, or FAMD 
for analysis. MIFH framework was validated using holdout 
validations. The experiment's findings demonstrate that, while 
MIFH's sensitivity and specificity were comparable to those of 
other previously developed baseline techniques, it outperformed 
them in terms of accuracy. By enhancing the effectiveness of the 
system and providing the most practical response out of all input 
prediction models while accounting for performance parameters, 
MIFH can help radiologists and physicians diagnose heart patients 
more accurately. 
Long et al [2015] recommended rough sets-based attribute 
reductions and interval type-2 fuzzy logic systems (IT2FLS) for 
diagnosis of cardiac diseases. To handle the uncertainties and 
difficulties related to high-dimensional datasets, IT2FLS and 
attribute reductions using rough sets were combined where 
hybrid learning procedures blending fuzzy c-mean clustering, 
chaotic firefly parameter modifications, and genetic hybrid 
algorithms were used by IT2FLS. The computing cost of this 
learning process rises when high-dimensional datasets are 
employed. Rough sets-based attribute reductions utilizing 
chaotic firefly techniques were studied to identify best 
reductions and minimize computational burdens resulting in 
improved performances of IT2FLS. The study’s experimental 
results showed better performances in comparison to other ML 
techniques including ANNs, SVM, and NB. The model could be 
used in decision supports for identifying cardiovascular illness. 
Mehmood, et al [2021] outlined Cardio Help that used deep 
learning-based convolutional neural networks (CNNs) for 
estimating patients’ risks of acquiring cardiovascular diseases. 
The suggested approach uses CNN to predict HF early on in order 
to represent temporal data. Building datasets of cardiac diseases 
and comparing outcomes of current methods produced good 
results. Their experimental outcomes with an accuracy of 97% 
showed better performances when compared to existing 
methods. 
2. Proposed methodology   

This section covers this work’s suggested model in detail. The 
first phase normalizes data using min-max normalizations. The 
second involves reducing dimensionality by principal component 
analysis, while the third involves classifying data using an HFCNN 
based on modified chicken swarm optimization (CSO). Figure 1 
depicts the suggested model's overall design.    
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Figure 1. Proposed Flow Diagram 

2.1. Data normalizations using min/max normalizations 

Normalizing the data is necessary to prevent erroneous findings 
from being produced by variances in the input crime data. This 
study adopts the Min-Max Normalization paradigm, which 
involves employing a mathematical function to transform 
numerical values into a new range [Yin et al 2017; Gumaei et al 
2019]. The crime dataset in this proposed study is normalized 
using often used min-max normalizations. The dataset's values 
are normalized to fall between the minimum and maximum 
values specified, and each value is then changed using Equation 
(1)  

v′ =  
v − minA

maxA − minA

(new_max A
− new_minA ) + new_minA 

(1) 

Where,    
A – Data Attributes,     
Min (A), Max (A) – stands for A’s min. and max. absolute values  
𝑣′- New values of inputs  
v - Old values of inputs   
New_ max (A), new_ min (A) imply max and min value ranges 
(boundaries of required ranges).  

2.2. Dimensionality Reduction using PCA 

On normalizing data their dimensionalities are reduced. PCA is 
being used in this effort to reduce dimensionality. A 
dimensionality reduction method called principal component 

analysis creates new features by combining the original features 
in a linear fashion. Instances of the dataset are mapped via PCA 
from d-dimensional spaces to k-dimensional subspaces where 
k<d. The Principal Components (PC) are the collection of k newly 
created dimensions. Each PC aims to maximize variance while 
avoiding variation that has already been taken into account by 
all of its previous components [Du et al 2016; Tian et al 2015]. 
The first component, then, covers the highest variation, while 
each subsequent component covers a smaller degree of variance. 
Principal components can be computed using: 

𝑃𝐶𝑖 = 𝑎1𝑋1 + 𝑎2𝑋2 + ⋯ + 𝑎𝑑𝑋𝑑 (2) 

Where 𝑃𝐶𝑖  – Principal Component ‘i’; 𝑋𝑗  – original feature 

‘j’; 𝑎𝑗 – numerical coefficient for 𝑋𝑗. 

2.3. Classification using Modified chicken swarm optimization 
based HFCNN   

After dimensionality reduction it sends for classification. This 
work using modified CSO based hybrid fuzzy CNNs. 

• CNNs  

CNN's structure differ from normal ANN structures. CNN's layers 
are selected to spatially suit inputs unlike a standard ANN, which 
flatten inputs into vectors. Tradition CNNs are made of singular 
or multiple subsampling and connected layers [Wu et al 2019; 
Gao et al 2019].  The standard design of CNN is shown in Figure 
1, and the layers are explained below:  

 
                                                               Figure 2. Typical CNN 

• Disadvantages of traditional CNN 

The dimension reduction process in the conventional CNN 
architecture involves pooling, which occasionally leads to 
information loss. Fuzzy CNN was employed in this work to solve 
this problem. 

• Fuzzy CNN 

CNN's fuzzy Three different layers i.e. fully linked, subsampling, 
and convolution layers form CNNs where its typical structure is 
depicted in. Figure 1. Subsequent sections explain these layers. 

• Convolution layer         

Kernels (filters) convolves input features in convolution layers 
with n output feature maps are generated from input features 
and results of kernels’ convolutions. The outputs generate 
features obtained by convolving kernels and inputs in terms of 
feature maps with sizes i*I which are convolution matrices and 
are also called filters.   
A CNN can have many convolutional layers; the feature vector 
serves as both inputs and outputs for succeeding convolutional 
layers which have arrays of n filters. The feature map depths 
(n*), which are formed by convolving these filters with inputs are 
equal to filter counts utilized in convolution procedures where 
these maps can be created as unique features of input points. 
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Figure.3. Convolutional Neural Network architecture 

The l-th convolution layer outputs 𝐶𝑖
(𝑙)

 include feature maps 

computed as; 

𝐶𝑖
(𝑙)

 =𝐵𝑖
(𝑙)

+ ∑ 𝐾𝑖,𝑗
(𝑙−1)

∗
𝑎𝑖

(𝑙−1)

𝑗=1
𝐶𝑗

(𝑙)
 

(3) 

Where, 𝐵𝑖
(𝑙)

 stands for bias matrices and 𝐾𝑖,𝑗
(𝑙−1)

implies 

kernels with a*a sizes that connect (l − 1) layers’ j-th and i-th 
feature maps.  

Outputs 𝐶𝑖
(𝑙)

 result in feature maps. In (4), first 

convolution layers 𝐶𝑖
(𝑙−1)

 are input spaces i.e. 𝐶𝑖
(0)

= 𝑋𝑖 . 

Activation functions are applied on these generated feature 
maps for nonlinear transformations of convolved layer outputs. 

𝑌𝑖
(𝑙)

= 𝑌(𝐶𝑖
(𝑙)

) (4) 

Where, 𝑌𝑖
(𝑙)

 denote activation functions and 𝐶𝑖
(𝑙)

 stand for 

received inputs.     

2.3.1. Pooling or Sub sampling Layers       

These layers reduce dimensionalities of feature maps in terms of 
geography that were retrieved from preceding convolution 

layers. Subsampling takes place between masks and feature 
maps. A number of subsampling strategies, such as average, 
sum, and maximum pooling, were suggested. Max pooling, which 
gives an output characteristic the greatest value of every block, 
is the most used type of pooling. Recall that the ability of the 
convolution layer to withstand picture translation and rotation is 
enhanced by the subsampling layer. 

2.3.2. Fully Connected layer     

Final layers of CNN are traditional feed forward networks with 
multiple hidden layers where outputs use SoftMax activations: 

𝑌𝑖
(𝑙)

= 𝑓(𝑧𝑖
(𝑙)

) (5) 

Where 𝑧𝑖
(𝑙)

= ∑ 𝑤𝑖,𝑗
(𝑙)

𝑦𝑖
(𝑙−1)𝑚𝑖

(𝑙−1)

𝑖=1
 

(6) 

Where,  𝑤𝑖,𝑗
(𝑙)

 imply h class’s tuning of weights by fully connected 

layers and f represents functions for non-linear transfers. It is 
important to note that fully connected layer's nonlinearities are 
built within neurons in contrast to pooling and convolutions 
which build it in separate layers.   

 

Figure4. Fully Connected Layer 
Equations above compute weights by using fuzzy 

membership functions defined by ( w1 = 0.3, w2 = 0.4, w3 =
0.5, w4 = 0.7) and using:  

𝑜2 = 𝑢𝑖
(𝑗)

(𝑎𝑖
(2)

) (7) 

Where  𝒖𝒊

(𝒋)
(. )  represents Gaussian membership 

function  𝒖𝒊

(𝒋)
(. ): 𝑹 ⟶  [𝟎, 𝟏], i=1,2,…,M, j =1,2,….,N. .  

2.3.3. CNN parameter tuning using modified chicken swarm 
optimization 

A CNN model's parameters, such as its kernel size (KS), stride 
(S), and filter number (NF) (convolution layer), determine how 
successful the model is. This has led some academics to argue 
that fine-tuning these hyperparameters is essential to achieving 
successful outcomes. In this paper, the dove swarm optimization 
process is used to get the desired values.   

2.3.4. Chicken swarm optimization (CSO) 

CSO optimizations are meta-heuristics with biological 
inspirations which mimics hierarchical structures of chicken 
swarms and individual movements of birds. Swarm hierarchical 
structures can be viewed as groups with a rooster in lead 
followed by hens and chicks. These birds follow distinct laws of 
movements. The social lives of chickens are significantly 
impacted by a hierarchical framework. Stronger chickens 
subjugate weaker ones. Chickens near group peripheries include 
both submissive hens and roosters and more dominant hens that 
stay near head roosters [Osamy et al 2020; Hafez et al 2015]. 
Local optimal characteristics are a simple trap for conventional 
CSO to fall into. To address this issue, this work makes use of 
CSO's mutation operator. In this work, flip bit mutation was 
used. This mutation operator flips the bits of a specified 
genome. (That is, the genomic bit is changed from 1 to 0, and 
vice versa if it is 1.  
Mutation, Chicken Swarm Optimization (MCSO) 

2.3.5. MCSO mathematical model follows chickens’ actions as 
detailed below: 

1) Chicken swarms are made up of several groups. Groups 
with roosters in the front are followed by hens and 
chicks. 

2) The fitness values of hens determine hierarchies within 
swarms: individual chickens are represented by the 
lowest fitness values, while group leaders are the 
roosters with the highest fitness values. Among them 
would be chickens. 

3) Mother-child bonds remain unchanged in groups within 
swarms. Time steps (G) divide states from one 
another. 

4) The four groups of the N virtual chickens that comprise 
the swarm are RN, HN, CN, and MN, which stand for 
counts of hens, chicks, roosters, and mother hens, 
respectively and locations in a D-dimensional spaces 
are represented by 

𝑥𝑖,𝑗 ( 𝑖∈[𝑖,……..𝑁],𝑗 ∈ [1,…..,𝐷]), (8) 

Rooster Movements: Equations (8) and (9) 
demonstrate highly fit roosters hunting for food in more 
locations when compared to roosters with lower fitness. 

𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 ∗ (1 + 𝑅𝑎𝑛𝑑𝑛(0, 𝜎2)) (9) 

𝜎2 = {

1,         𝑖𝑓 𝑓𝑖 ≤ 𝑓𝑘 ,  | 

    𝑒𝑥𝑝 (
𝑓𝑘 − 𝑓𝑖

|𝑓𝑖|+∈
)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        𝑘 ∈ [1, 𝑁], 𝑘 ≠ 𝑖,

 

(10) 

where xi;j represents selected roosters with indices i, Rand 
n(0, 𝜎2) represents Gaussian distribution having 0 as means and 
standard deviations 𝜎2 , ∈ 𝑠   signifying smallest constants in 
computers used to avoid divide by zero errors, k signifies rooster 
indices selected randomly, fi stands for  fitness values of 
corresponding roosters xi.  
Hens’ movements: Hens follow roosters in pursuit of food. 
Moreover, they would carelessly seize the delicious food they 
discovered while being repressed by the other hens. In a 
competition for food, the more assertive chickens would have an 
edge over the more timid ones. Equations (10) and (11) provide a 
mathematical formulation for these events. 
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𝑥𝑖,𝑗
𝑡+1 = 𝑥𝑖,𝑗

𝑡 + 𝑆1 ∗ 𝑟𝑅𝑎𝑛𝑑 ∗ (𝑥𝑟1,𝑗

𝑡 − 𝑥𝑖,𝑗
𝑡 ) + 𝑆2 ∗ 𝑅𝑎𝑛𝑑 

∗  (𝑥𝑟2,𝑗

𝑡 − 𝑥𝑖,𝑗 

𝑡 ) 

(11) 

𝑆1 = 𝑒𝑥𝑝((𝑓𝑖 − 𝑓𝑟1)/𝑎𝑏𝑠(𝑓𝑖)+∈)) (12) 

𝑆1 = 𝑒𝑥𝑝 ((𝑓𝑟2−  
𝑓𝑖)) (13) 

where Rand stands for uniform random values between 
[0, 1]. r1  ∈ [1,….., N] signifies ith hens’ group mates, while r2 ∈  
[1,….., N] implies  roosters/hens indices in swarms while [1,….., 
N] are randomly selected indices [Ahmed et al 2017]. 
Chick movement: Chicks move around mothers in search of food 
and depicted as Equation (17). 

𝑥𝑖,𝑗
𝑡+1=𝑥𝑖,𝑗

𝑡 + 𝐹𝐿 ∗ (𝑥𝑚,𝑗
𝑡 − 𝑥𝑖,𝑗

𝑡 ) (14) 

Where 𝑥𝑚,𝑗
𝑡   signifies positions of ith chick’s mothers where m ∈  

[1;N], The parameter FL denotes the speed at which a chick 
would follow its mother; it is generated at random within the 
range [0, 2] to account for the variations between each chick. 
Feature spaces are relatively wide and features are represented 
with values between 0 to 1. Finding best places in search spaces 
that maximize specified fitness functions, intelligent searching 
strategies are pertinent. The CSO's fitness function, represented 
by equation (15), uses the training data to minimize the feature 
counts chosen while maximizing classification performance 
throughout the validation set. 

𝑓𝜃 = 𝜔 ∗ 𝐸 + (1 − 𝜔)
∑ 𝜃𝑖𝑖

𝑁
 

(15) 

where 𝑓𝜃 represents fitness functions of vectors 𝜃  with N 
denoting counts of dataset’s features, E denoting classifiers’ 
errors, and ω represents constants regulating classification 
performances of selected feature counts. The 0/1 components 
indicate unselected / selected features.  
Given dataset's feature counts correspond to used variable 
counts. Variables are limited to intervals [0, 1], where 
characteristics that are connected with their approaches 1 and 
can be used for classifications. The thresholds, which specify 
which traits in particular needs to be assessed in accordance 
with equation (16) are variables in individual fitness 
computations. 

𝑓𝑖,𝑗 = {
1 𝑖𝑓 𝑋𝑖,𝑗 > 0.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

(16) 

Where Xij represents dimensions of search agents i at dimensions 
j. In updating firefly positions, simple truncation procedures 
were used to ensure variable boundaries as new values could 
violate limiting constraints [0, 1] for some dimensions.  

1. Define starting values for   RN, HN, CN, MN, and G;  
2. Randomize swarm’s initial hen values. 
3.  Xi (i = 1, 2,...; N).; 
4. Define max. iteration counts (Tmax); 
5. while T < Tmax do for each iteration 
6. if T % G equals 0 then 
7. Create hierarchical structures in swarms by ranking 

fitness of chickens; 
8. Split swarms into groups and observe how each group's 

chicks and mother hens interact; 
9. end 
10. for each chicken Xi in the swarm do 
11. if Xi is a roster then 
12. Modify Xi’s location using equation 10; 
13. end 

14. if Xi is a hen then 
15. Modify Xi’s location using equation 12; 
16. end 
17. if Xi is a chick then 
18. Modify Xi locations with Equation (15);  
19. end 
20. Evaluate new solutions with Equation (16); 
21. If new solutions are better than previous  ones, update 

them; 
22. end 
23. end 
24. Use flip bit mutations on updated solutions 
25. Evaluate new solutions with Equation (16) 
26. end  

3.  Results and discussion 
The experimental results of the proposed model are presented in 
detail in this section. The suggested idea is implemented using 
Mat Lab. The new HFCNN model is compared with the existing 
CNN and Swarm-ANN models for the Cleveland database from 
the UCI data repository in terms of precision, recall, accuracy, 
and f-measure. The Cleveland database is accessible at 
https://archive.ics.uci.edu/ml/machine-learning-
databases/heartdisease/... The term "multivariate" describes 
this kind of dataset, which are numerical data analyses that 
provide or incorporate wide ranges of mathematical or statistical 
variables. Fourteen characteristics make up this composite: 
blood pressure at rest, serum cholesterol, blood sugar while 
fasting, maximal heart rate reached, angina brought on by 
exercise, old peak — ST depressions due to activities in 
comparison to rest —slopes of peak exercise ST segments, and 
counts of main vessels, and thalassemia. The Cleveland database 
has 920 occurrences. The performance comparison results are 
displayed in Table 1. 

3.1. Performance Metrics 

1) Precisions 
Precisions are percentages of results which are   relevant 

and computed using 

Precision=
Truepositive

truepositive+falsepositive
 (17) 

2) Recalls 
Recalls are percentages of properly classified total relevant 

results by the suggested algorithm and defined as  

Recall=
Truepositive

truepositive+FalseNegative
 (18) 

3) Accuracies 
Accuracies are fractions of predictions that models get right 

and defined as: 

Accuracy=
Truepositive+TrueNegative

Total
 (19) 

4) F measures  
F-scores are harmonic means of systems’ precisions and 

recalls and computed as 
2 x [(Precision x Recall) / (Precision + Recall)] (20) 

5) Error rates 
Error rates are measured prediction errors of models w.r.t. 

models and computed as  
Error rate = 100 – Accuracy (21) 

                               
Table.1. Performance comparison results 

 
Metrics 

Methods 

Swarm-ANN CNN HFCNN 

Accuracy (%) 85 87 89 

Precision (%) 82 85 88 

Recall (%) 86 87 90 

F –measure (%) 87 89 92 

Error rate (%) 15 13 11 
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Figure.5. Accuracy results 

Figure 5 shows that in comparison to other methods, the HFCNN 
approach achieves excellent accuracy, meaning it can 
successfully identify characteristics related to heart disease in 
an efficient manner. As a result, the HFCNN analyzes the 
features in the training field and feature space and is able to 
effectively identify any changes in the features. In addition, the 

approach makes use of pertinent features that are chosen using 
PCA. It makes use of covariance matrices, which effectively 
lowers dimensionality difficulties, and it can identify heart 
illness with 89% recognition accuracy, compared to 85% and 87% 
for Swarm-ANN and CNN.    

 

 
                                        Figure.6. Precision results 

The suggested HFCNN's performance is contrasted with that of 
several other algorithms, including CNN and Swarm-ANN. A graph 
is created to demonstrate the suggested HFCNN's good 
performance. The precise findings are shown on the y-axis in the 
above image, while the X-axis indicates several methodologies. 

The input scale is normalized in the proposed work using the min 
max normalization model, which also improves the suggested 
HFCNN model's accuracy. According to the findings, the existing 
Swarm-ANN and CNN models only yield 82% and 85% of the 
greater precision outcomes, respectively, but the suggested 
HFCNN model achieves 88%.                   
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Figure 7. Recall results 
Figure 7. shows the outcomes of the Swarm-ANN, CNN, and 
HFCNN techniques' heart disease categorization recall metrics. 
The training set's incoming features are categorized using the 
HFCNN technique. When compared to traditional classifiers like 
Swarm-ANN and CNN, the effectiveness of the HFCNN technique 

recall is greater because of the successfully picked up feature 
that is utilized to classify the normal and abnormal 
characteristics. The current Swarm-ANN and CNN models acquire 
recall rates of 86% and 87%, respectively, whereas the proposed 
HFCNN reaches 90%.      

 
Figure 8. F-measure results   

 
Figure. 8 displays the f measure as a function of the suggested 
HFCNN algorithm and the current CNN and Swarm-ANN 
techniques. The suggested HFCNN showed a dependable result 
that may be applied as real smart technology in medical data 
mining after it was trained to identify impacted aspects. Other 

research investigated whether the capacity to discriminate 
amongst ML-based models is unique. HFCNN scores 92%, Swarm-
ANN scores 87%, and CNN scores 89% on the chosen attributes. 
The suggested HFCNN model outperforms other models in terms 
of f measure outcomes, as shown by the above image.       

 
Figure 9. Error rate results   

In figure. 9, HFCNN guarantees an extremely low error rate of 
11%, which is far lower than competing methods like CNN and 
Swarm-ANN. Models like Swarm-ANN and CNN have error rates of 
15% and 13%, respectively. A high classification rate for heart 
disease prediction is achieved by the effective update of 
network weights, bias, and learning processes, which reduce 

error rates when measured using precision and recall metrics. 
Table 1 displays the obtained value. During the training phase, 
incoming inputs are analyzed using several perceptions that are 
then utilized to effectively classify the testing data. A good 
training procedure lowers the error rate during the classification 
phase.         

4. Conclusion and future work  

In the modern world, heart disorders are a major cause of early 
disability and death. This suggests that their prognoses are 
serious problems for the healthcare systems. This study advances 
knowledge and advances the creation of an intelligent system 
based on the DL technique for the prediction of heart disease. 
The foundation for data normalization in this work is min-max 
normalization.  In this study, PCA is used to reduce 
dimensionality and to identify cardiac issues, this paper uses a 
hybrid fuzzy convolution neural network (HFCNN) based on 
modified chicken swarm optimization. The experimental findings 
reveal that the suggested model has a high accuracy of 89%. Min 

max normalization is ineffective at handling outliers, hence 
alternative normalization models will be required in the future. 
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