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The tomato (Solanum lycopersicum) is an extensively cultivated 
horticultural plant that plays a crucial role in worldwide food 
supply and human nutrition. The tomato plays a prominent role in 
the field of horticulture worldwide and is considered the second 
most widely consumed vegetable, following the potato. India is 
the second-largest tomato producer in the world and plays a 
significant role in global tomato output. The global tomato 
output, as reported by the Food and Agriculture Organization of 
the United Nations (FAOSTAT, 2021), stands at 189.134 million 
tonnes. In India, the tomato production is recorded at 21.181 
million tonnes (FAOSTAT, 2021). Tomato plants face numerous 

diseases, including bacterial spot, tomato mosaic, and yellow leaf 
curl, leading to significant global crop losses (Singh & Misra, 2017). 
Prompt and precise disease detection is essential for formulating 
efficient management strategies to limit these losses. 
Advancements in deep learning and computer vision have 
demonstrated encouraging outcomes in the identification and 
classification of plant diseases (Ferentinos, 2018; Fuentes et al., 
2017). Convolutional Neural Networks (CNNs) are a highly 
effective method for automatically extracting information from 
images, resulting in accurate illness categorization (Amara et al., 
2017; Bakhshipour and Jafari, 2018). Various data augmentation 

 

 

ABSTRACT 
 

Tomato (Solanum lycopersicum), a vital horticultural crop, faces increasing challenges from diseases such as bacterial spot, 

tomato mosaic, and yellow leaf curl, causing substantial global crop losses. Timely and accurate disease detection is crucial 

for effective management strategies. This research introduces a sophisticated method for detecting tomato leaf diseases by 

enhancing a model with diverse data augmentation techniques. Evaluation metrics including precision, recall, and F1-score 

consistently demonstrate high performance, ranging from 1.00 to 0.99 to 1.00, respectively. By incorporating Mixup, 

CutMix, Adversarial examples, Style Transfer, and Image Blending during training, the model achieves remarkable 

validation accuracies: 99.47%, 99.26%, 99.42%, 99.68%, and 99.63%, respectively. Notably, the highest accuracy of 

99.68% is achieved using Style Transfer augmentation. In contrast, a Convolutional Neural Network (CNN) employing 

conventional augmentation techniques achieves a prediction accuracy of 98.99% for the same tomato diseases. These results 

underscore the significant improvement in disease prediction accuracy through the integration of advanced augmentation 

techniques with CNNs. The study highlights CNNs with advanced augmentation as the optimal choice for accurately 

predicting tomato diseases. 
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strategies, including Mixup, CutMix, adversarial examples using 
the Fast Gradient Sign Method (FGSM), Style Transfer, and Image 
Blending, have been used to enhance the generalization and 
performance of models (Cubuk et al., 2019). Transfer learning, 
utilizing pre-trained CNN models, has been employed to improve 
the precision of tomato disease detection (Liu et al., 2018; 
Ramcharan et al., 2017). Ensemble models, which integrate 
various CNN architectures, have demonstrated enhanced 
performance in simultaneously detecting multiple diseases (Ulutaş 
& Aslantaş, 2023). In addition, researchers have investigated the 
use of federated learning frameworks to detect plant diseases. 
This research has shown that collaborative learning across several 
devices is possible (Thakur et al., 2023). The study used an 
extensive database called plant village, which includes photos of 
both healthy and damaged tomato leaf samples. The tomato 
diseases examined in this study are Bacterial spot, Tomato mosaic, 
and Yellow leaf curl, which are caused by Xanthomonas species, 
Tomato Mosaic Virus (ToMV), and Tomato Yellow Leaf Curl Virus 
(TYLCV), respectively. Furthermore, numerous other research 
have employed data augmentation and convolutional neural 
networks (CNNs) to detect plant diseases. In Ferentinos' (2018) 
study, an examination was conducted on deep learning models, 
such as Convolutional Neural Networks (CNNs), with the aim of 
detecting and diagnosing plant diseases. Convolutional Neural 
Networks (CNNs) possess the ability to autonomously acquire 
information from images and have demonstrated remarkable 
precision in the classification of diseases. Model generalization is 
enhanced with the use of data augmentation. In their study, 
Fuentes et al. (2017) devised a Convolutional Neural Network 
(CNN) model specifically designed to identify tomato diseases and 
pests in real-time. The model demonstrated an impressive 
accuracy rate of 99.53%. Data augmentation techniques such as 
rotations, shifts, zooms, and flipping were employed. Singh and 
Misra (2017) employed image segmentation techniques to 
separate plant leaves from the background. They then extracted 
several variables such as color, texture, and form to classify the 
leaves using an Artificial Neural Network (ANN). Their approach 
achieved an impressive accuracy of over 90% in detecting 
diseases. Amara et al. (2017) employed a deep convolutional 
neural network (CNN) to categorize diseases affecting banana 
leaves, resulting in an impressive accuracy rate of 98%. The 
implementation of data augmentation techniques such as 
rotations, flips, and shifts resulted in an enhancement of 
performance. In their study, Bakhshipour and Jafari (2018) 
conducted a comparison between Support Vector Machines (SVM) 
and Artificial Neural Networks (ANN) in order to determine their 
effectiveness in detecting weeds based on shape data. The 
Artificial Neural Network (ANN) achieved superior performance, 
with an accuracy rate of 97%. Model robustness was enhanced with 
the implementation of data augmentation. Liu et al. (2018) 
devised a sophisticated convolutional neural network (CNN) model 
to classify diseases in apple leaves. Their model achieved an 
accuracy rate of 97%. The researchers employed data 
augmentation and transfer learning techniques using datasets of 
real images. Ramcharan et al. (2017) utilized data augmentation 
and transfer learning techniques by employing a pre-trained CNN 
model to classify cassava diseases. Their approach yielded an 
accuracy rate exceeding 90%. Mohanty et al. (2016) devised a deep 
learning methodology employing Convolutional Neural Networks 
(CNNs) to detect plant diseases from photographs. The study 
demonstrated exceptional precision across 14 different crop 
species and 26 distinct diseases. The CNN model demonstrated 

improved accuracy with the implementation of data 
augmentation. In their study, Kamilaris & Prenafeta-Boldú (2018) 
conducted a survey on deep learning techniques, such as 
Convolutional Neural Networks (CNNs), for agricultural 
applications, specifically focusing on plant disease detection. The 
results of their research demonstrated a high level of accuracy. 
Guijarro et al. (2018) employed convolutional neural networks 
(CNNs) to automatically separate leaf textures. This segmentation 
process was aimed at identifying important regions that are 
relevant for illness categorization. The utilization of CNNs 
resulted in an enhancement of accuracy. Simonyan and Zisserman 
(2014) created highly complex convolutional neural network (CNN) 
models specifically designed for the purpose of recognizing images 
on a wide scale. Their models achieved the best performance 
currently available on the ImageNet dataset. In their 2016 study, 
He et al. introduced deep residual networks that demonstrated 
enhanced training for convolutional neural networks (CNNs), 
surpassing the performance of earlier models in image recognition 
benchmarks. Szegedy et al. (2015) developed convolutional 
networks with increased depth by using inception modules, 
resulting in unprecedented accuracy on the ImageNet dataset. 
Cubuk et al. (2019) created Auto Augment, a method that 
autonomously explores the most effective data augmentation 
strategies, resulting in enhanced accuracy across various datasets. 
The utilization of deep learning techniques, specifically 
Convolutional Neural Networks (CNNs), in conjunction with data 
augmentation and transfer learning, has exhibited exceptional 
performance in the identification of tomato leaf diseases, 
surpassing previous methods. These technological breakthroughs 
have the ability to assist farmers and other individuals involved in 
agriculture in detecting and managing diseases at an early stage. 
This can ultimately lead to a decrease in crop losses and an 
improvement in overall output. 
Existing Method 
The existing method (Murali and Nagaraju, 2023), involves 
standard preprocessing steps to prepare the images for model 
training. Firstly, images are resized to a fixed dimension, typically 
224x224 pixels, to ensure consistency across the dataset. This step 
is crucial for maintaining uniformity and compatibility with the 
input layer of the convolutional neural network (CNN). Next, pixel 
values are normalized to the range [0, 1] by rescaling, which helps 
in stabilizing the training process and improving model 
convergence. Basic data augmentation techniques are applied to 
increase the diversity of the training data and prevent overfitting. 
These techniques include horizontal flipping, rotation, and 
zooming of images. While these augmentations help in creating a 
varied dataset, they are relatively simple and might not fully 
capture the complexities and variations present in real-world 
scenarios of tomato leaf diseases. The existing method employs a 
standard CNN model to classify the images. This model 
architecture consists of several convolutional layers, pooling 
layers, and fully connected layers. The CNN model is trained using 
the preprocessed and augmented images without any advanced 
augmentation techniques. The CNN model is compiled with the 
Adam optimizer and categorical cross-entropy loss function. The 
training process involves fitting the model on the training data for 
a fixed number of epochs, typically 10, and validating the 
performance on a separate validation set. The existing CNN model 
achieves a prediction accuracy of 98.99% for detecting tomato leaf 
diseases. While this accuracy is reasonably high, it can be further 
enhanced by incorporating more sophisticated data augmentation 
techniques. 

 

MATERIALS AND METHODS 
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Figure.1. Proposed Method for Tomato Disease 

detection 

Dataset Selection and Preprocessing 

The dataset for tomato diseases was chosen and preprocessed 
according to the methodology described in the article by Murali 
and Nagaraju, (2023). Moreover, advanced data augmentation 
techniques have been implemented to enhance the precision of 
categorization. The parameter known as batch size, which 
dictates the quantity of samples processed during each training 
cycle, has been established at 32. The epoch parameter is set to 
10, indicating the number of full iterations across the dataset 
during training. The dimensions of the image are standardized to 
224x224 pixels, which ensures compatibility and efficiency for the 
model. The current augmentation strategy includes 4 classes that 
cover different kinds of tomato leaf diseases, such as bacterial 
spot, tomato mosaic, and yellow leaf curl. 

 

     Figure.2: Images from the dataset showing healthy and diseased Tomato leaves 

(a) Tomato  acteria   pot (b) Tomato  ea th 

(c) Tomato Mosaic  ir s (d) Tomato  e  ow  eaf   r   ir s
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Data augmentation 
Data augmentation is further enhanced by the introduction of 
Mixup and CutMix, which are unique strategies aimed at increasing 
the diversity of the training dataset. Mixup involves the blending 
of images and labels, whereas CutMix entails the combination of 
segments from two images along with their respective labels. Both 
techniques contribute to enhancing the overall generalization of 
the model. The method involves generating adversarial examples 
using the Fast Gradient Sign Method (FGSM), a technique that 
evaluates the model's resilience by modifying input images 
according to model gradients. Another noteworthy component is 
the application of a pre-trained VGG19 model for style transfer. 
This entails utilizing the pre-trained model to augment visual 
characteristics, hence enhancing the machine's capacity to 
identify nuanced patterns. A specialized picture blending function 
is designed to combine two photos, enhancing the variety of the 
training dataset. The combination of various augmentation 
strategies is embodied in a bespoke data augmentation function. 
This function intelligently integrates Mixup, CutMix, adversarial 
examples, style transfer, and picture blending techniques to 
create a training dataset that is both highly diverse and enriched. 
Distinct data generators are subsequently created for the training 
and test sets. The training data generator incorporates rescaling, 
shear, zoom, and horizontal flip augmentations, which enhance 
the training process by making it more resilient. Conversely, the 
test data generator is less complex, as it merely applies rescaling 
to the pixel values. To construct the Convolutional Neural Network 
(CNN) model. The model undergoes training using the training 
data generator, and its training progress is kept in the 'history' 
variable. The model that has undergone training is then stored in 
a file called 'tomato_leaf_disease_model_augmented.h5'. In 
summary, this comprehensive method demonstrates a deliberate 
incorporation of different augmentation tactics to improve both 
the diversity and strength of the training dataset, which could 
result in an enhanced and more flexible model for real-world use. 
Mixup: 
Mixup is a method that creates fresh training data by calculating 
the linear interpolation between pairs of pre-existing samples. 
Suppose we have two input images, X_i and X_j, together with 
their associated one-hot encoded labels, Y_i and Y_j. Additionally, 
we have a random parameter, λ, which is sampled from a Beta 
distribution with parameter α, the mixup operation is defined as 
follows: 
Mixed Image = Mixed Image=λ⋅Xi+(1−λ)⋅Xj 
Mixed Label = Mixed Label=λ⋅Yi+(1−λ)⋅Yj 
This fosters the model's ability to acquire knowledge from various 
amalgamations of images and labels, hence enhancing its capacity 
for generalization. The process of linear interpolation is used to 
create fresh augmented samples by blending pairs of images and 
labels (Zhang et.al, 2017). Regularization of the model enhances 
generalization. 
CutMix: 
CutMix is a data augmentation methodology that merges segments 
of two photos to generate a novel training sample. Given two 
input images, X_i and X_j, along with their respective labels, Y_i 
and Y_j, and a randomly chosen parameter, β, from a Beta 
distribution with parameter α, the cutmix operation is defined as 
follows: 
Cut Ratio=1−β 
Random Position=(cx,cy) sampled randomly 
Mixed Image[i]=Xi, with a cut region replaced by Xj 

Mixed Label[i]=β⋅Yi+(1−β)⋅Yj 
This promotes the model's robustness by encouraging it to 
concentrate on various sections of the input images. The process 
involves transferring patches from one image to another, while 
adjusting the labels in proportion to the patch area. This 
technique was introduced by Yun et.al in 2019. This model is 
designed to identify objects based on incomplete perspectives. 
The Fast Gradient Sign Method (FGSM) 
The Fast Gradient Sign Method (FGSM) creates adversarial 
instances by modifying input images in the direction of the 
gradient of the loss function with respect to the input. Given an 
input image X, its accompanying label Y, a model M, and a slight 
alteration ε, the FGSM operation is defined as follows: 

Gradient=∇XCrossEntropyLoss(M(X),Y) 

Perturbation=ϵ⋅sign(Gradient) 

Perturbed Image=X+Perturbation 
This applies a minor disturbance to the input image in order to 
evaluate the model's ability to withstand external influences. 
Generate adversarial examples by introducing minor alterations 
that are directly proportional to the sign of the gradients of the 
loss with respect to the input (Goodfellow et.al, 2014). Evaluates 
the resilience of the model. 
Style Transfer: 
Style transfer entails utilizing a pre-trained convolutional neural 
network, such as VGG19, to extract characteristics from both a 
content image and a style image. Let C(X) denote the content 
characteristics of an image X, and S(Y) denote the stylistic 
characteristics of an image Y. Given an image G that is created by 
combining both content and stylistic features, the style transfer 
operation is defined as: 
G=VGG19(C(X),S(Y)) 
This process applies the visual characteristics of image Y to the 
visual content of image X. Utilizing convolutional neural network 
(CNN) characteristics, the style of a given image (referred to as 
the style image) is transferred to the content of another image 
(referred to as the content image). This process is informed by the 
works of Tao et.al (2022), Simonyan et.al (2014), Ghiasi et.al 
(2017), and Gatys et.al (2015). Enhances the variety of the 
dataset. 
Image Blending: 
Image blending is the process of merging two images, A and B, 
using a predetermined blending parameter α. The blending 
operation is defined as: 
Blended Image=α⋅A+(1−α)⋅B 
This facilitates a seamless transition between the two images, 
hence enhancing the diversity of the collection. Enhances the 
variety of data in the dataset (Zhang et.al, 2017). The 
implementation of these data augmentation techniques 
collectively enhances the construction of a training dataset that 
is both extremely diverse and supplemented. This, in turn, 
promotes improved generalization and robustness of the model for 
detecting tomato leaf diseases. 
CNN Model Architecture 
Model summary  
In this study, the first Conv2D layer processes input images of size 
224x224 pixels with three color channels (RGB). This layer utilizes 
32 filters of size 3x3, resulting in an output shape of (None, 222, 
222, 32). A subsequent MaxPooling2D layer reduces spatial 
dimensions by half. 
Additional Conv2D and MaxPooling2D layers follow this pattern, 
increasing filter count and further reducing spatial dimensions. 
The final Conv2D layer produces an output shape of (None, 52, 52, 
128). Subsequent to the convolutional layers, a Flatten layer 
transforms the 3D output into a 1D array with an output shape of 
(None, 86528). Two Dense layers follow the flattening process. The 
first Dense layer has 128 neurons, resulting in an output shape of 
(None, 128), and an extensive parameter count of 11,075,712. The 
second Dense layer, serving as the output layer, comprises four 
neurons representing the classes of tomato leaf diseases, resulting 
in an output shape of (None, 4) with 516 parameters. The total 
number of trainable parameters in the model is 11,169,476, 
indicating a complex and deep architecture. Notably, there are no 
non-trainable parameters. The model's output layer suggests a 
multi-class classification task with four potential disease classes. 
The model is saved in HDF5 format. Overall, this architecture is 
tailored for robust image classification, specifically for identifying 
and categorizing tomato leaf diseases based on input images.            
The proposed method employs the same CNN architecture as the 
existing method but trains it using the advanced data 
augmentation techniques described above. This approach 
leverages the strengths of each augmentation technique to 
improve the model's robustness and accuracy. The CNN model is 
compiled with the Adam optimizer and categorical cross-entropy 
loss function, similar to the existing method. However, the 
training process involves fitting the model with each 
augmentation technique separately, allowing for a comprehensive 
evaluation of their individual impacts on model performance. The 
proposed method achieves significantly higher classification 
accuracy compared to the existing method: Mixup Augmentation 
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(99.47%), CutMix Augmentation (99.26%), Adversarial Examples 
(99.42%), Style Transfer Augmentation (99.68%), Image Blending 
Augmentation (99.63%). These results demonstrate the substantial 
improvement in disease prediction accuracy through the 
integration of advanced data augmentation techniques with CNNs. 
The highest accuracy of 99.68%, achieved using style transfer 
augmentation, underscores the effectiveness of this technique in 
enhancing model performance. The data details the training 
process of a convolutional neural network (CNN) over ten epochs, 
with each epoch comprising multiple batches. Following each 
epoch, the training and validation datasets' loss and accuracy are 
the primary metrics reported. Effective learning and 
generalization are demonstrated in the first few epochs (1-3) by a 
steady decline in loss and an increase in accuracy for both training 
and validation sets. The data exhibits some volatility in the epochs 
that follow (4-6), which could indicate adjustments to the data's 
more intricate patterns. Notably, training and validation measures 
both keep getting better in the following epochs (7–10), 
highlighting the model's capacity to enhance its comprehension of 
the data. Strong generalization performance is indicated by the 
high validation accuracy in the last epochs (Table 2). Overall, the 
model performs well on both datasets, indicating that it has 
effectively learned the fundamental patterns. Positive signs of 
effective training include growing accuracy and decreased 
validation loss. Insights into computational efficiency are also 
supplied by the training times for each period. The training 
procedure seems to have gone well overall, as evidenced by the 
model's final validation accuracy of 99.68%, which points to strong 
learning and generalization (Graph 1). The study demonstrates 
remarkable evaluation metrics with precision, recall, and F1-score 
values for each disease class in the tomato plant dataset ranging 
from 1.00 to 0.99 to 1.00, respectively. The metrics show 
impressive assessment results. Specifically, the Tomato Bacterial 
spot, Tomato Yellow Leaf Curl Virus, Tomato mosaic virus, and 
healthy tomato classes (Table 3, Graph 2) all demonstrate perfect 
predictive accuracy, reducing false positives and false negatives. 
By adding variations to training samples using strategies like 
rotation and flipping, the suggested data augmentation strategy 
seeks to further improve the model's adaptability and 
generalization. This method prevents overfitting and ensures the 
model's robustness across a range of cases, especially in situations 
where there is a lack of data. Although the present study 
demonstrates a high accuracy baseline, further monitoring is 
necessary, particularly on a validation set, to assess the model's 
sustained performance and its ability to generalize to cases that 
have not yet been observed in real-world applications with 
different illness prevalence and features.  
The existing method, based on a conventional CNN with classic 
augmentation techniques, achieves an accuracy of 98.99% and 
evaluation measures with recall, precision, and F1-score ranging 
from 0.96 to 0.99, 0.97 to 1.00, and 0.98 to 1.00, respectively. 
The proposed strategy incorporates novel approaches such as 
Mixup, CutMix, adversarial examples through the Fast Gradient 
Sign Method (FGSM), Style Transfer, and Image Blending to 
enhance the CNN model's performance. This results in a 
substantial improvement in assessment metrics, with the 
proposed model achieving an impressive accuracy of 99.68%. 
Precision scores a perfect 1.00, while recall and F1-score values 
range from 0.99 to 1.00. Mixup and CutMix combine images or 
portions of images during training, leading to a more robust model 
by incorporating data variation. Adversarial examples generated 
by FGSM introduce perturbations, making the model more 
resistant to input fluctuations. Style Transfer and Image Blending 
expose the model to a wider variety of visual characteristics, 
significantly improving generalization. The advanced 
augmentation techniques proposed in this study are vital for 
optimizing the CNN, leading to significantly improved disease 
prediction accuracy. The implementation of these techniques has 
increased the model's accuracy from 98.99% to 99.68% and 
improved its ability to distinguish between various tomato leaf 
diseases (Tomato Bacterial Spot, Tomato Yellow Leaf Curl Virus, 
Tomato Mosaic Virus) and healthy tomato samples, as evidenced 
by notable improvements in precision, recall, and F1-score. 
Results and Discussion 

Tomato crops encounter various challenges, with bacterial spot, 
tomato mosaic, and yellow leaf curl being particularly harmful. 
Each disease presents distinct symptoms on the leaves (Figure2). 
The study presents a comparative analysis of existing and 
proposed methods for detecting tomato leaf diseases, focusing on 
differences in preprocessing, data augmentation techniques, and 
classification accuracy. The results demonstrate the effectiveness 
of advanced data augmentation methods in significantly 
enhancing the performance of convolutional neural networks 
(CNNs) for disease detection. 
The existing method involves standard preprocessing steps, where 
images are resized to 224x224 pixels and normalized to the range 
[0, 1] to ensure consistency and compatibility with the CNN 
model. Basic data augmentation techniques, such as horizontal 
flipping, rotation, and zooming, are used to diversify the training 
data and prevent overfitting. However, these methods are 
relatively simple and may not fully capture the complexities of 
real-world scenarios. The model used in the existing method is a 
standard CNN, consisting of several convolutional layers, pooling 
layers, and fully connected layers, trained using the preprocessed 
and augmented images without advanced augmentation 
techniques. The training process involves compiling the CNN 
model with the Adam optimizer and categorical cross-entropy loss 
function and training it for ten epochs with validation on a 
separate dataset. The existing CNN model achieves a prediction 
accuracy of 98.99%. While this is reasonably high, there is 
potential for further enhancement through more sophisticated 
data augmentation techniques. 
In contrast, the proposed method (Figure.1), incorporates several 
advanced data augmentation techniques to enhance the diversity 
and robustness of the training data. The preprocessing steps 
remain the same as in the existing method, ensuring consistency 
in image resizing and normalization. The advanced data 
augmentation techniques introduced include Mixup, CutMix, 
Adversarial Examples, Style Transfer, and Image Blending. Mixup 
creates new training examples by combining pairs of examples 
with a weighted average, fostering the model's ability to 
generalize by learning from various amalgamations of images and 
labels. CutMix replaces a random patch of an image with a patch 
from another image, enhancing the model's robustness by allowing 
it to focus on different parts of the images. Adversarial examples 
introduce small, intentionally designed perturbations to the 
images to test the model's resilience, making the model more 
robust to such perturbations. Style Transfer uses a pre-trained 
convolutional neural network to apply the artistic style of one 
image to another, creating a diverse set of training examples with 
different textures and appearances. This technique achieves the 
highest accuracy improvement among all methods. Image 
Blending combines two images to create new examples, further 
increasing the diversity of the training dataset. The effectiveness 
of this method varies depending on the dataset characteristics and 
blending parameters. 
The CNN model architecture remains the same as the existing 
method but is trained using these advanced data augmentation 
techniques. The training process involves fitting the model with 
each augmentation technique separately to comprehensively 
evaluate their impacts on model performance. The proposed 
method significantly outperforms the existing method in terms of 
classification accuracy. Mixup augmentation achieves an accuracy 
of 99.47%, CutMix achieves 99.26%, Adversarial Examples achieve 
99.42%, Style Transfer achieves the highest accuracy of 99.68%, 
and Image Blending achieves 99.63%. The highest accuracy 
achieved using style transfer augmentation underscores the 
effectiveness of this technique in enhancing model performance. 
The results highlight the substantial improvement in disease 
prediction accuracy through the integration of advanced data 
augmentation techniques with CNNs. 
The results indicate that the proposed method's advanced 
augmentation techniques significantly enhance the model's ability 
to generalize and accurately detect tomato leaf diseases. The 
introduction of Mixup, CutMix, Adversarial Examples, Style 
Transfer, and Image Blending into the training process results in 
remarkable validation accuracies. Each technique contributes 
uniquely to the model's performance. Mixup and CutMix 
consistently improve training and validation accuracy, 
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demonstrating their effectiveness in enhancing model 
generalization. Adversarial examples show moderate 
improvement in accuracy and loss reduction, indicating their role 
in making the model more resilient to perturbations. Style 
Transfer offers notable enhancements in accuracy, particularly in 
later epochs, suggesting its efficacy in augmenting training data. 
Image Blending presents varying results, with effectiveness 
dependent on dataset characteristics and blending parameters. 
Overall, the proposed method achieves outstanding evaluation 
metrics, with precision, recall, and F1-score values ranging from 
1.00 to 0.99 to 1.00, respectively. These metrics highlight the 
model's excellent performance in accurately detecting various 

tomato diseases (Tomato Bacterial Spot, Tomato Yellow Leaf Curl 
Virus, Tomato Mosaic Virus) and healthy tomato samples, 
minimizing false positives and negatives. The study underscores 
the significant improvement in disease prediction accuracy 
through the integration of advanced augmentation techniques 
with CNNs. The findings demonstrate that employing these 
techniques can enhance model robustness and generalization, 
leading to more effective and precise disease management in 
crops. The potential for these methods to improve CNN 
performance in agricultural applications is significant, offering a 
promising avenue for further research and implementation in real-
world scenarios. 

    

Comparison of the Existing and Proposed methods 

Step Existing Method Proposed Method 

Preprocessing Resize to 224x224 pixels, 
Normalize to [0, 1] 

Resize to 224x224 pixels,  
Normalize to [0, 1] 

Data Augmentation Basic Data Augmentation 
Horizontal Flipping, Rotation, 

Zooming 

Advanced Data Augmentation 
Mixup, CutMix, Adversarial Examples (FGSM), 

Style Transfer, Image Blending 

Model Architecture CNN Model Architecture 
- Convolutional Layers 

- Pooling Layers 
- Fully Connected Layers 

CNN Model Architecture 
- Convolutional Layers 

- Pooling Layers 
- Fully Connected Layers 

Training Adam Optimizer, Categorical 
Cross-Entropy Loss, 10 Epochs 

Adam Optimizer, Categorical Cross-Entropy 
Loss, 10 Epochs 

Classification Accuracy 98.99% Mixup: 99.47%, 
CutMix: 99.26%, 

Adversarial Examples: 99.42%, 
Style Transfer: 99.68%, 
Image Blending: 99.63% 

Evaluation Metrics Precision: 0.97 to 1.00, 
Recall: 0.96 to 0.99, 

F1-Score: 0.98 to 1.00 

Precision: 1.00, 
Recall: 0.99 to 1.00, 

F1-Score: 1.00 

 

 
The integration of advanced data augmentation techniques into 
the CNN training process has significantly improved the accuracy 
of tomato leaf disease detection. By employing methods such as 
Mixup, CutMix, Adversarial Examples, Style Transfer, and Image 
Blending, the proposed approach has enhanced the model's 
robustness and generalization capabilities. The highest prediction 
accuracy of 99.68%, achieved through style transfer 
augmentation, underscores the effectiveness of these advanced 

techniques in developing a more accurate and reliable tomato leaf 
disease detection system. Furthermore, these techniques have 
increased the model's accuracy from 98.99% to 99.68% and 
improved its ability to distinguish between various tomato leaf 
diseases (Tomato Bacterial Spot, Tomato Yellow Leaf Curl Virus, 
Tomato Mosaic Virus) and healthy tomato samples, as evidenced 
by notable improvements in precision, recall, and F1-score. This 
study highlights the potential of advanced augmentation methods 
to improve CNN performance in agricultural applications, leading 
to more effective and precise disease management in crops. 

Experimental Results: 
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