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INTRODUCTION

Deep learning technology have led to major breakthroughs
in the identification of skin cancer. A lot of information may
be gleaned from dermatoscopy pictures, and CNNs have been
widely employed to extract features from them. Artificial
intelligence (AI) researchers use a technique called deep
learning to teach machines to analyze data in ways modeled
after the human brain. Accurate insights and predictions can
be generated by deep learning models that can identify
intricate patterns in images, text, sounds, and other types of
data. Tasks like text-to-audio transcriptions or image
descriptions that normally need human intellect can be
automated with deep learning techniques. (Zhuang, et al.,
2018) Nevertheless, a number of shortcomings in the current
methodologies have been brought to light by new research,
such as the inadequate handling of data diversity, the
inadequate integration of clinical data, and the inadequate
generalization across various populations.This experiment
suggests a hybrid model that combines the use of Transformers
for clinical data processing and CNNs for picture analysis.
The model seeks to improve skin cancer detection accuracy
and robustness by merging these two potent designs (Esteva
et al., 2017; Haenssle et al., 2018; Tschandl et al., 2019;
Yuan et al., 2021, Cao et al., 2022). Some of the examples of
skin cancer images are represented in Figure 1.

Skin cancer stands as one of the most prevalent forms of cancer
worldwide, witnessing a notable rise in incidence rates over
recent decades. The early and precise identification of this
disease is paramount to ensuring effective treatment strategies
and enhancing patient prognoses. Within the realm of medical
image analysis, machine learning (ML) methodologies, notably
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deep learning, have demonstrated significant potential
(Yonekura et al., 2019) This scholarly review explores the
latest developments in skin cancer diagnosis through ML
techniques over the last five years.

Convolutional Neural Networks (CNNs) have emerged as the
foundational component in the field of the machine learning
techniques focused on the detection of skin cancer, primarily
due to their capacity to autonomously discover and take out
hierarchical features from unprocessed image data. In a seminal
study, Esteva et al. (2017) developed a CNN model trained on
a comprehensive dataset of 129,450 clinical images, which
included over 2,000 diseases, and demonstrated performance
outcomes that were on par with that of dermatologists in the
classification of skin cancer. This groundbreaking research
underscored the possibilities of deep learning for dermatology.
Building upon these initial findings, Haenssle et al. (2018)
undertook a comparative analysis, training CNNs on the
HAM10000 dataset, which is comprised of 10,015
dermatoscopic images. Their findings indicated that the CNN
model achieved diagnostic accuracy on par with that of
experienced dermatologists. Further advancements were made
by Tschandl et al. (2020), who extended the previous research
by introducing an ensemble of CNN models. This approach
not only enhanced the accuracy of the predictions but also
provided uncertainty estimates, thereby augmenting the
reliability of the model’s outputs.

In an effort to enhance the precision and resilience of systems
designed for the detection of skin cancer, researchers have
delved into the development of hybrid models that amalgamate
Convolutional Neural Networks (CNNs) with other advanced
machine learning methodologies, including Transformers and
Support Vector Machines (SVMs). In a seminal study by Yuan
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et al. (2021), a novel hybrid model was introduced, which
integrated CNNs with Transformers. This integration aimed to
capitalize on the spatial features identified by CNNs and the
contextual information processed by Transformers, thereby
enhancing the model’s performance in the detection of various
skin lesions. This research underscored the advantages of
merging diverse machine learning architectures (Yuan et al.,
2021). Building upon this work, Cao et al. (2022) advanced
the field by proposing a hybrid model that merges CNNs with
SVMs, with the objective of refining the classification of skin
lesions. The CNN was tasked with extracting detailed features
from dermoscopic images, while the SVM was responsible for
the final classification task. This methodology was found to
yield superior accuracy results compared to models that relied
solely on CNNs (Cao et al., 2022)

Transfer learning has played a crucial role in addressing the
challenge posed by the scarcity of labeled data in the domain
of medical imaging. By harnessing pre-trained models on
extensive image databases, researchers have substantially
enhanced the performance capabilities of systems designed
for the detection of skin cancer. In a study by Brinker et al.
(2019), the strategy of utilizing transfer learning in conjunction
with a pre-trained ResNet model, subsequently fine-tuned on
a substantial collection of dermoscopic images, was deployed.
This methodology resulted in achieving superior performance,
underscoring the potential of transfer learning in the realm of
medical applications. Similarly, Nasr et al. (2020) employed
transfer learning through the DenseNet architecture, which
led to a noteworthy level of accuracy in the detection of
melanoma and various other forms of skin cancer. The
research underscored the significance of the process of fine-
tuning and the augmentation of data in augmenting the
performance of the model.

The limited availability of annotated medical images represents
a substantial hurdle in the development of effective machine
learning (ML) models. Addressing this challenge has
necessitated the exploration of strategies such as data
augmentation and the creation of synthetic data. In 2017,
Perez and Wang presented an array of data augmentation
techniques aimed at augmenting the diversity of training data.
These methods, including rotation, flipping, and color jittering,
were found to significantly enhance the generalization
capabilities of Convolutional Neural Network (CNN) models.
Furthermore, in 2019, Bissoto et al. utilized Generative
Adversarial Networks (GANs) to produce synthetic
dermoscopic images. The purpose of this synthetic data

generation was to bolster the training dataset, ultimately leading
to enhanced performance of CNN models in the identification
of rare skin lesions.

As Machine Learning (ML) models advance in complexity, the
imperative to ensure their transparency and interpretability
becomes increasingly significant, particularly within medical
domains. Recent research has dedicated considerable attention
to enhancing the explainability of models in the detection of
skin cancer. Lundberg and Lee (2017) pioneered the SHAP
(SHapley Additive Explanations) framework, offering a
comprehensive strategy for elucidating the outputs of ML
models. By utilizing SHAP values, they were able to decode
the predictions of Convolutional Neural Networks (CNNs) in
the context of skin cancer detection, thereby uncovering the
features that influence the model’s decisionmaking process.
In a related study, Ardila et al. (2019) introduced attention
mechanisms into their CNN architecture to accentuate specific
regions of interest within dermoscopic images. This
methodological enhancement not only augmented the
accuracy of the model but also rendered the decision-making
process more comprehensible for medical professionals.

Based on the literature review, the primary gaps identified are:

- Inadequate incorporation of clinical dataset with image
dataset.

- Restricted generalization to a range of demographics.

- Complexity of model leading to overfitting.

A new hybrid model is presented to fill up the gaps found. The
hybrid model combining Efficient Net for image feature
extraction and a Transformer encoder for clinical data
processing In order to enhance skin cancer detection and
classification, this model will make use of both image data
and clinical data (such as patient history and genetic
information). The following are included in the suggested
hybrid model:

Broadening the dataset’s scope and diversity by incorporating
data from a variety of sources, such as foreign dermatology
clinics and freely accessible databases like DermNet, ISIC,
and HAM10000. The applicability of the approach to various
populations is thus guaranteed.

Build a hybrid model that combines convolutional neural
networks (CNNs) for feature extraction from images along with
recurrent neural networks (RNNs) or transformers for
sequential clinical data processing. The architectural design
that may be seen is:

Image Data Pathway: EfficientNetB0 for extracting rich features
from dermatoscopic images.

Clinical Data Pathway: Transformer encoder to process and
integrate clinical metadata.

Fusion Layer: Combines features from both pathways.

Classification Head: Fully connected layers with dropout and
batch normalization for robust classification.

To reduce over-fitting and enhance generalization, use
sophisticated regularization strategies such data augmentation,
dropout, batch normalization, and adversarial training.

To ensure thorough performance validation, compare the
proposed model with a wide range of existing models, such

Figure 1: Skin cancer images
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as ensemble techniques, various deep learning architectures,
and conventional machine learning classifiers.

MATERIALS AND METHODS

The detailed methodologies of the current research presented
in this section.

Data Collection and Preprocessing
Data Sources: The HAM10000 (“Human Against Machine
with 10000 training images”) dataset is a sizable set of
dermatoscopic pictures of skin lesions that are utilized for
dermatological and medical image analysis research and
development. This dataset has been frequently used to train
and assess skin cancer detection models, and it is publicly
available.

Key Features of HAM10000 Dataset
Size and Diversity: There are 10,015 dermatoscopic pictures
in the dataset. Diverse skin conditions are depicted in the
images, guaranteeing a diversity of lesion forms, hues, and
structures.

Classes: The dataset consists of seven distinct classes which
represents seven different types of skin lesions depicted the
Table 1.

Annotations: The associated diagnosis is marked on each
image, which is helpful for supervised learning activities. The
anatomical location of the lesion, the patient’s age, and gender
are among the metadata included in the dataset that can be
utilized to enhance the feature set.

Image Quality: Dermatoscopic techniques were employed to
take the high quality images, yielding detailed and magnified
views of the skin lesions. The photos’ resolution varies, but it

Table 1: Labels of different skin cancer types with abbreviation.
Cancer name Dataset label

(Abbreviation)
Melanoma (MEL)
Benign keratosis-like lesions (BKL)
Basal cell carcinoma (BCC)
Actinic keratoses and intraepithelial
carcinoma / Bowen’s disease (AKIEC)
Vascular lesions (VASC)
Dermatofibroma (DF)
Melanocytic nevi (NV)

Table 2: The metadata associated with each image in the HAM10000
dataset.
S.No. Labels Meaning
1 Image ID It is the unique identifier for each image.
2 Lesion ID Identifier that links multiple images of the

same lesion.
3 Diagnosis The ground truth label for the type of

lesion (e.g., MEL for melanoma).
4 Age Age of the patient
5 Gender Gender of the patient
6 Localization Anatomical site of the lesion

Figure 3: Flow diagram of the proposed hybrid mode
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usually hovers around 600x450 pixels.

Clinical Context: The dataset offers a thorough resource for
building reliable models because it covers both common and
uncommon skin disorders. It’s especially useful for creating
models that generalize well to many kinds of skin lesions. The
metadata of current (HAM10000) dataset used represented in
Table 2.

Data Augmentation: Apply transformations such as rotation,
flipping, shading, translation, and shearing to increase dataset
diversity.
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Clinical Data Integration: Collect relevant clinical data (e.g.,
patient history, genetic information) corresponding to the image
data. The flow diagram of proposed hybrid model is presented
in Figure 2.

Model Architecture
1. Start It is the begining of the process

2. Input Data (Images & Clinical Data) The input provided to
the model is in clinical as well as image data.

3. Feature Extraction using CNN For extracting features the
Convolutional Neural Network is taken into account.

4. Feature Encoding using Transformer It is done by the use
of the transformer.

5. Concatenate Features Concatenation of the features from
both CNN and Transformer is done.

6. Dense Layers for Classification Concatenated features are
then passed to the dense layer for the classification.

7. Output (Prediction) The model results into the prediction
of the skin cancer detection.

Image Data Pathway: EfficientNet is selected for its equilibrium
of performance and computational productivity. It employs a
compound scaling technique that scales depth, width, and
resolution all in the same way. The foundational CNN for
extracting rich characteristics from dermatoscopic pictures is
called EfficientNetB0. Because EfficientNetB0 strikes a balance
between computing efficiency and accuracy, it was selected.
The final convolutional layer of EfficientNetB0 outputs its
flattened output to a fully connected layer with ReLU
activation(Ghazal et al., 2018; Gessert et al., 2020 ).

Layer 1: Input layer for dermoscopic images (224x224x3)

Layer 2: EfficientNet feature extraction layers

Layer 3: Utilizing Global Average Pooling to decrease the spatial
aspects

Output: Feature vector representing image characteristics

Clinical Data Pathway: Utilized Transformer or RNN models
to process clinical data in sequence layers for clinical sequence
feature extraction were implemented. Transformers are perfect
for processing clinical data because they can handle
sequential data and capture long-range dependencies. The
clinical info is processed using a Transformer encoder. The
encoder is made up of feed-forward neural networks and
several layers of self-attention processes. Firstly, an embedding
layer is applied to the clinical data in order to convert
categorical features into dense vectors.

Layer 1: Input layer for clinical data

Layer 2: Embedding layer to convert clinical data into dense
vectors

Layer 3: Transformer encoder layers to process and learn
relationships within clinical data

Output: Feature vector representing clinical data characteristics

Fusion Layer: The feature vectors from the picture and clinical
data paths are combined in the fusion layer.

Concatenation: Concatenate the feature vectors from
EfficientNet and the Transformer. Concatenated features are
derived from the image data pipeline and the clinical data
pathway.

Fully Connected Layers: Dense layers to learn from the
combined feature set. To reduce overfitting and enhance
generalization, the concatenated features are input into a
sequence of fully connected layers that include batch
normalization, dropout, and ReLU activation.

S. ADITI APURVA

Figure 4: Transformer architecture
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Figure 5: Proposed model architecture

Figure 6: Confusion Matrix of the proposed system
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Classification Head: Based on the combined features, the
classification head makes a prediction about the kind of skin
lesion. The last layer is a seven-unit softmax layer that
represents the seven different kinds of skin lesions. The
probability distribution across the classes is produced using
the softmax activation function.

Layer 1: Completely linked layer with ReLU in operation

Layer 2: Dropout layer for regularization

Layer 3: Completely linked layer with softmax activation for
classification

Advanced Regularization Techniques
To prevent overfitting and improve generalization, the
following techniques were employed:

Data Augmentation: To increase the data diversity some
techniques such as rotation, flipping, and color jittering are
applied

Dropout: Eliminating the neurons randomly during the
training to prevent overfitting.

Batch Normalization: Inputs of each layers are normalized
to stabilize the learning.
Training and Evaluation
Training: The Adam optimizer is used to train the model
with a learning rate of 0.001 and categorical cross-entropy
loss. To improve data diversity, the dataset is enhanced with
methods including flipping, rotating, and color jittering.
Loss Function
Categorical Cross-Entropy The categorical cross-entropy loss
function is used to quantify the difference between the
predicted probability distribution and the true distribution.
Optimizer
Adam Optimizer The model is trained with a starting learning
rate of 0.001 using the Adam optimizer. The learning rate
reaches a plateau if the validation loss does not become
better.
Regularization Techniques
Dropout In order to prevent overfitting, dropout layers are
added to the fully connected layers and randomly set a
portion of the input units to zero during training.
Batch Normalization To stabilize and expedite the training
process, batch normalization is done to the fully connected
layers.
Data Augmentation
Online Augmentation During training, data augmentation
techniques like brightness modifications, zooming, horizontal
and vertical flips, and random rotations are implemented
dynamically to boost the diversity and resilience of the data.
Training and Validation Split
Train - Validation Split Two sets of the dataset were created:
20% for training and 80% for validation. Stratified sampling
allows for proportionate representation of each class in both
sets.

Training Configuration
Epochs and Batch Size - The proposed model is trained with
a batch size of 32 across 50 epochs.

Early Stopping - If after 10 consecutive epochs the validation
loss does not decrease, early stopping is used to end training.

Evaluation: AUC-ROC, F1-score, accuracy, precision, recall,
and other metrics are used to evaluate the model’s
performance on an alternative test set. Crossvalidation is
performed to ensure resilience and generalization.

Accuracy: The proportion of samples that were accurately
classified.

Precision: The proportion of accurate positive forecasts among
all positive forecasts.

Recall (Sensitivity): The proportion of all actual positives that
were accurate projections of positive outcomes.

F1-Score: The precision and recall harmonic mean.

AUC-ROC: The area under the receiver operating characteristic
curve indicates how well the model can distinguish between
classes.

5-Fold Cross-Validation:  To ensure robustness and
generalization, fivefold cross-validation is used. The dataset is
divided into five subsets, and each time the model is trained
and validated, a different subset is utilized for validation while
the remaining subsets are used for training.

Confusion Matrix: To comprehend the distribution of miss
classifications among the various classes, the confusion matrix
is examined. This aids in pinpointing particular classes that
the model finds difficult to discriminate.

Comparison: As a baseline, compared the suggested hybrid
model’s performance to that of various CNN architectures,
ensemble techniques, and conventional machine learning
classifiers.

The goal of the proposed hybrid model is to use the advantages
of Transformers for clinical data management and CNNs for
image feature extraction to obtain greater detection accuracy
for skin cancer. This method closes the gaps found and
improves model performance and generalization by utilizing
sophisticated regularization techniques. The model is made
to be reliable and relevant to a wide range of demographics
by combining clinical data and information from multiple
sources.

Implementation Details
The current section presents the implementation details of the
proposed system.

Software: TensorFlow and Keras were used in the model’s
implementation. Additional libraries utilized are scikit-learn
for evaluation metrics and pandas for data manipulation.

Hardware: To expedite the training process, the experiments
were run on a computer equipped with an NVIDIA GPU.

Hyperparameter Tuning: Conducted hyperparameter tuning
to optimize model performance.

RESULTS AND  DISCUSSION

On the HAM10000 dataset, the suggested hybrid model
outperformed previous models with an accuracy of 95.8 %.
The addition of clinical data greatly improved the model’s
capacity to generalize to a variety of demographics.

DETECTION OF SKIN CANCER
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The outcomes show how well CNNs and Transformers work
together to identify skin cancer. The model is appropriate for
clinical applications because to its excellent accuracy and
robustness. In order to improve the model’s performance,
future work will concentrate on growing the dataset and
making more refinements. The detailed comparison results
are presented in the Table 3.

The suggested hybrid model’s performance was optimized
by hyperparameter tuning. The many hyperparameters that
were examined and the accompanying outcomes are
compiled in the following Table 4.

Confusion Matrix
Insights about true positive, false positive, true negative, and
false negative predictions can be found in a confusion
matrix in Figure 6. It is employed to evaluate the suggested
hybrid model’s performance. It displays the distribution of
the model’s right and wrong classifications.

Performance Metrics
The hybrid model obtained better performance measures by
merging these two sources of data presented in Table 5, such
as a 95.8% accuracy, 95.3% precision, 96.0% recall, 95.6%
F1-score, and 0.975 AUC-ROC.

Conclusion and Future Direction
Over the past five years, there has been a remarkable progress
in the identification of skin cancer through machine learning
(ML) techniques. Convolutional Neural Networks (CNNs)
continue to serve as the foundational element in these systems,
with the incorporation of hybrid models, transfer learning,
and data augmentation techniques significantly contributing
to the enhancement of their performance. Moreover, the
pursuit of augmenting the explainability and interpretability of
these models is imperative for their integration into clinical
environments. The ongoing commitment to research and
cooperation between computer scientists and dermatologists

Table 3: Performance comparison of different models

Study Model Accuracy Precision Recall F1-Score
Esteva et al., 2017 CNN 72.1% 70.2% 71.8% 71.0%
Brinker et al.,2019 CNN 76.4% 75.1% 76.0% 75.5%
Haenssle et al., 2018 CNN 74.6% 73.4% 74.0% 73.7%
Tschandl et al., 2019 Hybrid 78.3% 77.5% 78.1% 77.8%
Proposed Model Hybrid (CNN + Transformer) 95.8% 95.3% 96.0% 95.6%

Table 4: Hyperparameter Tuning Results

Hyperparameter ValuesTested BestValue Effect on Accuracy
Learning Rate 0.01, 0.001, 0.001 Higher learning rates led to faster convergence but less stability.

0.0001
Batch Size 16, 32, 64 32 Batch size of 32 provided a good balance between training speed

and stability.
Dropout Rate 0.3, 0.4, 0.5 0.4 Dropout rate of 0.4 helped reduce overfitting without losing too

much information.
Number of Layers(CNN) 3, 4, 5 4 Four convolutional layers provided the best trade-off between

depth and performance.
Number of Heads(Transformer) 4, 8, 12 8 Eight attention heads in the Transformer encoder resulted in the

best performance.
Embedding Di-mension 64, 128,256 128 An embedding dimension of 128 was optimal for

balancing complexity and performance.
Epochs 30, 50, 70 50 Training for 50 epochs allowed sufficient learning without

overfitting.

Table 5: Performance Metrics of the Proposed Hybrid Model
Metric Value
Accuracy 95.8%
Precision 95.3%
Recall (Sensitivity) 96.0%
F1-Score 95.6%
AUC-ROC 0.975

is vital to propel this domain forward and enhance the
outcomes for patients. This study introduced a novel hybrid
model that uses both clinical and visual data to diagnose skin
cancer. In order to take advantage of both image and clinical
data, this paper introduced a unique hybrid model for skin
cancer diagnosis that combines Convolutional Neural
Networks (CNNs) and Transformer networks. It does this by
integrating Transformer networks with Convolutional Neural
Networks (CNNs). Significant gaps in the literature have been
filled by the suggested model, most notably the lack of
integration between picture attributes and clinical metadata.
The findings show that the hybrid model outperforms current
models and greatly improves the capabilities of automated
skin cancer detection systems. A thorough method for
diagnosing skin cancer is made possible by the combination
of CNNs for reliable feature extraction from dermoscopic
pictures and Transformers for efficient clinical data encoding.
The model’s dependability is further supported by the
confusion matrix analysis, which shows high true positive
and true negative rates. To improve the model’s resilience
and generalizability, future work will concentrate on growing
the dataset, adding more varied clinical data, and further
improving the model architecture. In order to confirm this
hybrid approach’s effectiveness for a variety of medical
diagnoses, its application to other medical imaging domains
will also be investigated. In conclusion, the suggested hybrid
model is a viable technique to raise the precision and
dependability of skin cancer detection, opening the door to
earlier and more successful clinical diagnosis. A hybrid model
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that fills in the limitations found in previous studies on skin
cancer detection was described in this publication. The model
demonstrated its promise for clinical usage by achieving high
accuracy and resilience by utilizing both imaging and clinical
data.
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