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One important aspect that restricts the production of crops is 
crop disease. The agricultural industry stands to lose a 
substantial amount of money if crop diseases cause 
precipitous decreases in output. Hence, in order to reduce 
crop loss and pesticide usage, early disease detection in crops 
is essential for choosing the best treatments. Crop diseases 
reduce crop output and quality, and they may impact any 
crop. Nevertheless, drug residues and environmental 
degradation might result from too relying on chemical 
control. There has never been a higher demand for high-
quality crops, driven by rising living standards. Consequently, 
there are problems that need fixing, and they pertain to the 
early detection and treatment of agricultural illnesses.  
Disease detection in agriculture has been a popular area of 
study as of late. Using deep convolutional neural networks 
(DCNN), Cheng et al. [1] achieved a reasonable recognition 

result by classifying and identifying diseases caused by 
agricultural pests via the use of the fine-tuning approach. In 
order to restore and identify diseases caused by agricultural 
pests, Yue et al. [2] created a super-resolution approach. 
Using a convolutional neural network (CNN), Kawasaki et al. 
[3] developed a system for diagnosing plant illnesses. Their 
goal was to detect two leaf diseases in cucumber plants. To 
detect a wide variety of leaf illnesses, Sun et al. [4] enhanced 
the classic AlexNet [5] model with CNN models that included 
batch normalisation and global pooling. These experiments 
show that using DCNNs to identify leaf diseases is both 
possible and useful. Pictures taken on farms, however, tend 
to be fuzzy. Due to their training on clean, high-resolution 
datasets, pre-trained classifiers have a much lower 
identification accuracy when images of poor quality.  
 
In order to enhance the precision of agricultural disease 
picture classification, it is necessary to super-resolve low-
resolution photos in order to raise the spatial resolution and 
recreate the high- 

 

 

 
 
 

 

 
 

 ABSTRACT 

In most cases, the acquired pictures for agricultural disease image identification are not very clear, which might result in 
subpar identification outcomes when used in actual production settings. The identification accuracy of pre-trained image 

classifiers is greatly affected by the picture quality. We suggest DATFGAN, a generative adversarial network that combines 

topology-fusion with dual-attention, to solve this issue. With this network, even low-resolution photographs may be improved 
to a much higher standard. Our suggested network also has a weight sharing method that may drastically cut down on 

parameters. The experimental findings show that compared to state-of-the-art approaches, DATFGAN produces better 

outcomes in terms of visual appeal. Furthermore, identification tasks are used to assess the altered pictures. The findings show 
that the suggested strategy is strong enough for real-world applications and performs far better than competing methods. 
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Ground Truth Bicubic DATFGAN 

 

   
 

FIGURE 1. Super-resolved image generated by DATFGAN (right) 
 
frequency specifics of acute angles. To improve upon low-
resolution farm photos, we present a generative adversarial 
network (GAN) that uses topology-fusion and dual-attention 
techniques. A DATFGAN network is the one that has been 
suggested. In order to assess the suggested approach, we compare 

its classification accuracy after picture transformation to that of 
state-of-the-art approaches. Our studies showcase the use of 
eight traditional classification networks on a dataset consisting of 
crop leaf disease photos categorised into a total of twenty-seven 
different ways. In Figure 1 we can see a super-resolution picture 
of a crop leaf disease that was created using DATFGAN.  
Transforming pictures using super-resolution approaches improves 
classification accuracy, according to experimental data. With a 3% 
gain in accuracy on average, DATFGAN outperforms the state-of-
the-art algorithms tested in this study. The following is an 
overview of our primary contributions. 
1) We provide a new approach to picture super-resolution 
specifically designed for agricultural disease photos.  
 
2) As far as we are aware, our approach represents the pioneering 
use of GANs in the field of agricultural disease picture processing.  
3) In terms of visual quality and classification accuracy, 
benchmark testing show that DATFGAN surpasses state-of-the-art 

approaches.  

 

I. RELATED WORKS 
One of the biggest problems in agriculture is the need for 
accurate methods of detecting crop stress and pathogens [6, 
7]. Using pattern recognition and image processing 
techniques, Zhang et al. [8] developed a system to identify 
apple leaf diseases. They used a dataset of 90 photos 
depicting sick apple leaves in their tests. They were able to 
get a recognition accuracy of over 90% using their method. 
Waghmare et al. [9] focused on a technique for detecting 
diseases in grape plant leaves. With only one leaf as input, 
their algorithm can remove the backdrop and then segment 
the image. Downy mildew and black rot are two of the most 
prevalent diseases in grape vines, and their research focused 
on these issues. They were 96.6% accurate using their 
method. In order to quickly, automatically, affordably, and 
accurately identify leaf diseases, Bashish et al. [10] created 
an image-based approach. There are four primary 
components to their approach: a structure for colour 
modification, picture segmentation using K-means clustering, 
texture feature computation, and a pre-trained neural 
network. They found that their system could identify and 
categorise illnesses with an accuracy of around 93% in 
experiments. Arivazhagan et al. presented a system to 
automatically identify and categorise plant leaf diseases in 
[11]. Their process is divided into four primary phases. An RGB 
input image's colour transformation structure is first built. 
Secondly, a segmentation procedure is carried out after 
masking and removing green pixels using a certain threshold 
value. Finally, segments that are valuable have their texture 
statistics calculated. The fourth step involves running the 
characteristics that have been retrieved through a classifier. 
With a 94% success rate, their technique accurately 
categorised the disorders under study. Convolutional neural 
network (CNN) based deep learning approaches outperform 
classical machine learning techniques [12]-[17], which need 
intricate picture preparation and classification procedures.  
Numerous academics have investigated deep learning-based 
agricultural disease identification in recent years with the 
goal of better crop management and health. A new method 
for building plant disease detection models utilising deep 
convolutional networks for leaf image classification was 
suggested by Sladojevic et al. [18]. They were able to train 
their model to identify thirteen distinct plant illnesses and to 
differentiate between real and fake plant leaves. Their 
created model showed experimental accuracy values of 96.3% 
for distinct class tests, ranging from 91% to 98%. The process 
of disease classification in banana leaves may be automated 
using a deep learning-based method [19] established by 
Amara et al. They used the LeNet [20] architecture as a 
convolutional neural network (CNN) to categorise picture 
collections. Even in difficult situations like lighting change, 
complicated backdrops, and varying real-world picture 
resolutions, sizes, positions, and orientations, their first 
findings showed that deep learning techniques work. To train 

a DCNN to detect 14 crop species and 26 illnesses (or lack 
thereof), Mohanty et al. [21] used a publicly available dataset 
consisting of 54,306 photos of healthy and sick plant leaves 
obtained under controlled circumstances. By using a held-out 
test set, their trained model was able to get an accuracy of 
99.35%. Using a dataset of photos taken in the field of cassava 
illnesses in Tanzania, Ramcharan et al. [22] trained a deep 
convolutional neural network (DCNN) to detect three diseases 
and two kinds of pest damage (or absence thereof) using 
transfer learning. Brown leaf spot had a best-trained model 
accuracy of 98%, red mite damage of 96%, green mite damage 
of 95%, cassava brown streak disease of 98%, and cassava 
mosaic disease of 96%. An open collection including 87,848 
photos containing 58 pairings of plants or diseases was used 
to train models by Ferentinos [23]. An AlexNet [5], VGG [24], 
and GoogLeNet [25] were among the model architectures 
developed; the highest accuracy for plant disease detection 
attained was 99.53%.  
 
Research shows that convolutional neural networks (CNNs) 
are effective in identifying agricultural diseases, and these 
experiments have shown promising outcomes. Unfortunately, 
farms usually only provide low-resolution, hazy photographs 
of crop diseases, which makes it difficult to enhance the 
accuracy of crop disease image detection. Hence, improving 
crop disease pictures using super-resolution technologies is of 
the utmost importance. To improve low-resolution farm 
photos, we suggest a GAN that uses topology-fusion and dual-
attention techniques.  

 

II. PROPOSED METHOD 
In Section III-A, we describe our network design in detail. In 
Section III-B, we then provide two attention processes, 
namely channel attention and texture attention. Section III-C 
concludes with a definition of adversarial training. 

 

A. NETWORK ARCHITECTURE 
The overall network architecture is described in Section III-
A1, parameter sharing in Section III-A2, and topology fusion 
in Section III-A3. This section is divided into three sections. 
We begin by outlining DATFGAN's general design. As a second 
point, we provide the generator network with the 
procedures for sharing parameters. Third, talk about the 
ways in which dense and residual connections may be used. 

1) Overall architecture 
2) A generator and a discriminator are the two main 

components of DATFGAN. A shallow feature extraction 
network, a parameter-sharing attention-enhanced topology-
fusion network, and a reconstruction network make up 
DATFGAN's generator network, as shown in Figure 2. Two 
convolutional layers retrieve shallow features from the 
generator network in the topology fusion network that is used 
for shallow feature extraction. Two branches of low-
resolution pictures are sent into the generator network. The 
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generator network's initial convolutional layer is followed by 
an upscaling module, which receives one branch as input. For 
information after the second convolutional layer, the other 
branch feeds into the topology fusion network. In order to 
create high-resolution pictures, the reconstruction network 
uses upscaled images in conjunction with anticipated 
information, taking use of global residual learning [26]. 
In Figure 3, we can see the discriminator network. In order 
to train the discriminator network, we first issue it with a 
maximisation problem. Like the VGGNet [24], it has seven 
convolutional layers and a growing number of filter kernels, 
going from 64 to 512. Every time the number of features is 
increased, the picture resolution is reduced using striding 
convolutions. A final LeakyReLu activation function and two 
linear layers are used to boost the likelihood of sample 
classification using the 512 feature maps that  

 

3) Parameter sharing 

Some statistical properties of local information may be 
identical to those of other local information, which means 
that the features obtained by convolution operations may 
also be applied to other types of data. This is because 
convolution processes extract local information. This allows 
for the reusability of the learning features across several 
picture locations. One feature (one dimensional of input 
data) is extracted by a convolution kernel (filter) in a 
convolutional neural network (CNN). Parameter explosion in 
the convolution layer may occur if the input data has 
numerous features (dimensions), since this results in a large 
number of convolution kernels. Furthermore, every 
convolution kernel in the layer ignores local correlations in 
data when extracting features.  
Parameter sharing ensures that features are translationally 
invariant, which means that the same feature may exist in 
several places in different datasets and be extracted from all 
of these places using the same convolution kernel. In 
addition, a convolutional layer may share its convolution 
kernel and minimise the number of parameters by conducting 
weight sharing, which is based on the local correlations 
between the input. A deep neural network's ability to extract 
features is directly proportional to the number of layers it 

contains, as each convolutional layer may employ a unique 
convolution kernel. In order to create a deeper structure 
trainable, decrease the number of network parameters, and 
increase the chance of avoiding overfitting, we use 
parameter-sharing attention- enhancing topology-fusion 
networks in the DATFGAN generating network. 
 

4) Topology fusion 

ResNet [26] was proposed to solve the problem of degrada- tion 
in deep learning. When the number of layers in a model 
increases, the error rate decreases. The degradation problem 
is closely related to optimization. When the structure of a 
model becomes increasingly complex, optimization becomes 
increasingly difficult, resulting in unsatisfactory learning re- 
sults. The residual block in ResNet [26] was implemented using 
residual connections. The input and output of the block were 
added element-wise through the residual connections. This 
simple form of addition does not add any extra param- eters or 
calculations to the network, but it can significantly increase 
the training speed of the model, thereby improving the overall 
effectiveness of training. When the number of layers in the 
model increases, this structure can also solve the degradation 
problem. 

ResNet [26] can train deep CNNs by establishing residual 
connections between front and back layers, which aids with 
the back-propagation of gradients during training. The basic 
idea of DenseNet [27] is the same as ResNet [26], but dense 
connections are established between all previous layers and 
latter layers. DenseNet [27] achieves better performance than 
ResNet [26] with fewer parameters and lower computational 
cost. Compared to ResNet [26], DenseNet [27] uses a more 
aggressive and dense connection mechanism of connecting all 
layers, meaning DenseNet [27] performs direct concatena- tion of 
feature maps from different layers, which can improve feature 
reuse. 

To take advantage of both residual and dense connec- tions, 
we combined both connections types in a single layer. 
Compared to residual networks, our proposed generator can 
preserve more information from previous states, providing 
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FIGURE 2. Generator network. 
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FIGURE 3. Discriminator network. 
 

our network with contiguous memory. Compared to dense 
networks, our proposed structure can reduce the channel 
growth rate by half. This significantly reduces the number of 
network parameters and makes deeper structures trainable. 
Additionally, this topology can enhance the flow of informa- tion 
and gradients. Figure 4 presents the inner structure of the 
proposed mixed-link connections. The operator M in Figure 4 

F 1, F 2 = Slice(W (Fi−1) + b),
 
(2) 

In Formula 2, the output of one layer or unit is sliced into 
two equal parts in the channel dimension. In this formula, W 

denotes the weight of a convolutional layer and b denotes the 
bias. 
denotes a mixed-link operation, which yields a fusion of Fi+1 
= C(C(F 1 + F 2  , F 2), F 1 

) (3) residual and dense connections between the 
current layer and previous layer. Mixed-link operations can be 
calculated using i 

will contain N/2 channels 
where Wt denotes the weight of a 1×1 convolution for block-after 
the slicing operation. feature fusion, which can reduce the 
number of channels. 
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(b) Dense Block 
 
 
 
 
 
 

 

FIGURE 4. Topology fusion 
 

Fj−1 denotes the features of the preceding mixed-link block
 
operates according to Formulas 5 and 6: 
and Fj denotes the output features of the current mixed-link
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block. Based on this mixed-link mechanism, our network can 

 
which decreases parameter growth and improves network 
performance. 

 
 

Fj = Wt(Fj−1) + b,
 
(4) 

 

B. DUAL ATTENTION 

We propose channel attention in Section III-B1 and texture 
attention in Section III-B2. Both of these mechanisms are used 
for improving the effectiveness of transforming images. 

 

1) Channel attention 
Our topology-fusion network models the interdependencies 
of convolution channels using channel attention, which may 
be autonomously taught to enhance vital channels and inhibit 
superfluous ones. In order to rebalance the gradient and 
information flow across networks, this mechanism acts as a 
filter. Figure 5 shows the components of the channel 
attention module. One of them is a global average pooling 
layer, which uses spatial feature compression to retrieve 
channel-level data. The next step is to create a bottleneck 
using two 1 1 convolutions. In the end, the data is normalised 
using a Sigmoid layer, and the resulting outputs are 
reweighted to provide self-trained channel-wise attention. 
Focus efforts  
 

S(F ) =
   1   Σ Σ 

F (i, j),

 
(5) 

 

  
where S(.) is a squeeze operation that pools the features 

in each channel into a global mean, and H and W denote the 
height and width of the input feature map, respectively. 

A(F ) = δ(Wuσ(WdS(F ))) ∗ F,
 
(6) 

where A(.) denotes the channel attention function, σ de- 
notes the ReLU function, and Wu and Wd denote two 1 1 
convolutions. Wd first reduces the channels to 1/16th of their 
original size, then Wu expands the tensor to the original shape, 
which forms a bottleneck. δ denotes the sigmoid function, 
which normalizes the weights for each channel to values 
between zero and one. We use these weights to boost useful 
information and suppress useless information. 

 
2) Texture attention 
As shown in Figure 6, texture is a very important feature in 
plant images and is very useful for image super-resolution 
tasks. Additionally, the high-frequency details of an image are 
typically located around edges, meaning it is important to assign 
attention with guidance from edges. Therefore, we use texture 
attention in our reconstruction network. 

We utilize edges as global spatial attention components for 
image reconstruction according to Formula 7-8, where Wexp 
represents expanding the original number of channels. In this 
process, the number of global features is doubled. Half of the 

RGB Image Edge Features Colored Edge Features 

 

 

             Channel Attention                                                                                   FIGURE 7. Edge features 
 

 

       FIGURE 5. Channel attention 
 

 
 
 
 
 
 
 
 
 
 
 

FIGURE 6. Texture attention Texture 

 
 
The idea behind this approach is that if you put in the same data, 
you should get the same results. A modest modification to an input 
should have a correspondingly minimal effect on the output. 
Consequently, making sure that many inputs produce the same 
result is the best approach to applying this regularisation. Building 
a confrontation sample and minimising the cross entropy between 
the output and ground truth may be achieved by first trying to 
find the disturbance that creates the most loss. 

landscape's loss function. We were surprised that this approach 
enhanced our model's generalizability, but there may be ways to 
simplify prediction functions that work better with actual data.  
 
one set of channels is weighted based on global information while 
the other set is kept local. In order to combine global and local 
data, the two parts are averaged and added together. To improve 
the aesthetic quality of the output photos, we used adversarial 
training rather than simply optimising the mean squared error 
between the input images and the targets. The following formula 
defines advertising loss: 
 

C. ADVERSARIAL TRAINING 
The core principle of adversarial training is direct 
confrontation. The pedagogical and instructional aims of two 
modules may be met via confrontational learning. One way 
to make a model's output more consistent is to use 
adversarial training, which involves smoothing down the  

F 1, F 2 = Slice(Wexp(Fi−1)),
 
(7) 

L = E[D(G(I ))] − E[D(I )],

 (9) 

synchronously generate both residual and dense connections, 
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i+1 0 i i 
F = Up(Canny(F  )) ∗ F 1 + F 2, (8) 

As shown in Formula 8, Up denotes an up-sampling op- 
eration and Canny denotes an operator for extracting edge 
features. F0 denotes the initial input features. The resulting 
edge features following up-sampling are multiplied by half of the 
initial input features using large-scale pixel maps to guide smaller 
maps. The result of this operation is then added to the other half 
of the initial input features to perform fusion. 

Figure 7 presents edge features obtained from an RGB image 
processed by the Canny operator. We also present colored edge 
features for the sake of clarity.where D(.) denotes the 
discriminator of DATFGAN and G(.) denotes the generator. ILR 
denotes generated pseudo- 

 
resolution images. 

After incorporating adversarial loss, the total loss can be 
represented as follows: 

L = αLGAN + Lcontent,
 (
10) 
Where L is the total loss and LGAN is the adversarial loss. 

Lcontent denotes the total perceptual loss for the target 
content. We set α to 0.01 in this work. 

 
III. EXPERIMENTS 

There were four parts to our experiments: preparation 
(Section IV-A), maintenance of the dataset (Section IV-B), 
training, and analysis.  

DATFGAN (Section IV-C), and contrasting DATFGAN with cutting-
edge approaches (Section IV-D). First, we established the software 
and hardware ecosystems. In the second phase, we gathered 
information for using in DATFGAN training and categorization. 
Using the acquired data, we trained DATFGAN in the third step. 
Our last step was to compare the outcomes of several super-
resolution algorithms for picture transformation and then rank 
them according to their accuracy in image categorization. 

 
A. EXPERIMENTAL SETUP 

To train the suggested network, we used a PC with the 
software and hardware components shown in Table 1. The 
network was built using Pytorch, and acceleration was 
achieved using CUDA. 

 
B. DATASETS 

The suggested super-resolution model was pre-trained using 
the DIV2K dataset [28]. The photos were down-sampled 
using bicubic interpolation, and then we created pairs of 
clear and unclear images by adding additive Gaussian noise 
to the low-resolution images. Additionally, we drew on 1,350 
photos of crop leaf diseases collected for the 2018 AI Chal-
lenger's Plant Disease Recognition Competition. Each of the 
twenty-seven categories has fifty photos. The CLDI dataset 
is the name we give to this group of data. Classification 

becomes more challenging and bias becomes less likely in 
the CLDI dataset since it includes photos of crop leaf 
diseases from both distinct species and from the same 
species with diverse images of diseases.  
Forty photos were chosen for training the classification 
network models, and ten images were chosen for testing. In 
order to get better outcomes during training and testing, all 
photos were preprocessed. We enhanced the data by using 
batch normalisation and randomly rotating and flipping the 
photos. You can see the CLDI dataset in Figure 8. Table 2 
further details the quantity and types of photos included in 
the CLDI collection. 

C. TRAINING DETAILS AND PARAMETERS FOR 
DATFGAN 
We down-sampled the pictures using bicubic interpolation 
after training DATFGAN on an NVIDIA RTX2080Ti GPU with 
the DIV2K dataset [28]. In order to generate pairs of clear 
and unclear pictures, we further applied additive Gaussian 
noise to the low-resolution photos. In order to enhance the 
data, we flipped and rotated the photos at random. To 
optimise the model, we trained it for 200 epochs using the 
RMSProp optimizer, which minimised the loss function. After 
60 epochs, we decreased the learning rate from its starting 
value of 0.0001. Both the momentum and the weight decay 
were set to 0.9 and 0.0001, respectively. Our team made 
advantage of 

    TABLE 2. CLDI dataset 
 

  Name Amount  
Apple Scab 50 

Potato Late Blight Fungus 50 
Cedar Apple Rust 50 
Strawberry Scorch 50 

Cherry Powdery Mildew 50 
Tomato Powdery Mildew 50 

Cercospora Zeaemaydis Tehon and Daniels 50 
Tomato Bacterial Spot Bacteria 50 

Puccinia Polysora 50 
Tomato Early Blight Fungus 50 

Corn Curvularia Leaf Spot Fungus 50 
Tomato Late Blight Water Mold 50 

Maize Dwarf Mosaic Virus 50 
Tomato Leaf Mold Fungus 50 
Grape Black Rot Fungus 50 

Tomato Target Spot Bacteria 50 
Grape Leaf Blight Fungus 50 

Tomato Septoria Leaf Spot Fungus 50 
Grape Black Measles Fungus 50 
Tomato Spider Mite Damage 50 

Citrus Greening June 50 
Tomato YLCV Virus 50 
Peach Bacterial Spot 50 

Tomato Tomv 50 
Pepper Scab 50 

Apple Frogeye Spot 50 
Potato Early Blight Fungus 50 

  Total 1350  
 

 
64 images as the mini-batch size to feed into the model. We 
also pre-trained our discriminative model using a VGG19 model 
trained in Pytorch to perform initialization and avoid undesired 

local optima. 
 

D. COMPARISON TO STATE-OF-THE ART METHODS 
We divided this stage into two phases of visual result inspection 
(Section IV-D1) and image classification (Sec- tion IV-D2). In 
Section IV-D1, we present super-resolution results and the 
ground truth images of crop leaf disease images. In Section IV-
D2, we describe the training details and experimental results 
of images classification. 

 
1) Visual result inspection 
We compared our final models to state-of-the-art peak signal- 
to-noise ratio (PSNR)-oriented super-resolution methods, in- 
cluding Biubic, SRResNet [29], EDSR [30], SRDenseNet [31], 
VDSR [32] and LapSRN [33], using the CLDI dataset. Because 
there is no effective standard metric for perceptual quality, we 
present representative qualitative results in Fig- ure 9. PSNRs 
and structural similarity indexes are also pro- vided for 
reference. In Figure 9, one can see that DATFGAN outperforms 
previous approaches in terms of both sharpness and details. For 
example, DATFGAN can produce sharper and more natural crop 
leaf disease image textures compared to state-of-the-art PSNR-
oriented super-resolution methods, which tend to generate 
blurry results with unnatural and noisy textures. 
Furthermore, previous PSNR-oriented super- resolution methods 
sometimes introduce unpleasant artifacts. DATFGAN eliminates 
such artifacts and produces natural 
2) Image classification 
We selected AlexNet [5], VGG-16 [24], Inception-v3 [34], 
ResNet-101 [26], Resnext50 [35], DenseNet-121 [27], Mo- 
bileNet V2 [36], and ShuffleNet V2 [37] as classification 
networks. During the process of training these classification 

high-resolution images and IHR denotes real-world high- 
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networks, we retained most of the weights in the original models 
and only trained softmax layers. We used 1080 im- ages from the 
CLDI dataset to train each model and 270 images from the CLDI 

dataset to test each model. Adam was used as an optimizer and 
cross entropy was used as a loss function. Additional training 
details could be found in Table 3. 

 

Figure 10 presents the classification accuracies for images transformed by different super-resolution methods and raw 

images. In Figure 10, one can see that classification accuracy 
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FIGURE 10. Overall classification accuracy 

 
 

may be enhanced by using super-resolution techniques to the modified 
pictures. In this experiment, DATFGAN outperformed the state-of-the-art 

approaches and significantly improved classification accuracy compared 

to the other super-resolution methods. This was especially true for the 
ResNet-101 [26] and DenseNet-121 [27] classifiers. Table 4 displays the 

findings of imaging disease categorization for crop leaves. 
 

 

Improving the spatial resolution of photographs of crop leaf diseases 

was suggested in this work using a super-resolution technique. Our 

findings show that compared to low-resolution photos acquired from 
farms, images altered using super-resolution approaches provide 

better categorization accuracy. This is due to the fact that, in 

comparison to low-resolution photos, photographs that have been 
processed using a super-resolution approach are able to transmit 

much more information, including specifics about lesions. Since the 

use of low-resolution photos led to reduced accuracy, our trials on the 
CLDI dataset clearly indicate this phenomenon. According to these 

findings, the super solution approaches were able to accurately 

recreate the intricate appearances of lesions, which greatly improved 
the process of disease detection. We found that DATFGAN enhances 

classification accuracy more than state-of-the-art algorithms when 

we compared them.  

DATFGAN is a GAN that combines topology-fusion and dual-
attention techniques. We combined dense and residual connections 

into one layer so that we might benefit from both kinds of 

connections. The DATFGAN generator is better at preserving 
information from earlier stages than residual networks, which allows 

our network to keep contiguous memory. Deeper structures can be 

trained with DATF-GAN since it can cut the channel development 
rate in half compared to dense networks, drastically reducing the 

number of network parameters. Two methods of paying attention, 

channel attention and texture attention, were used. Learned 
autonomously, channel attention may represent the 

interdependencies of convolution channels, allowing for the 

augmentation of relevant channels and the suppression of superfluous 
ones. In order to rebuild images, we may use edges as global spatial 

attention mechanisms since texture attention can direct attention 

depending on edges. Also, DATFGAN is great at making low-
resolution photographs seem sharp and crisp. Beyond that, our 

suggested network's parameter sharing approach may drastically cut 

down on parameter counts. There are still several constraints that 

need to be solved, despite the fact that DATFGAN provides many 

benefits over earlier techniques. The use of average pixel locations in 

traditional deep-learning-based super-resolution algorithms results in 
excessively smooth pictures; yet, they do increase

 

TABLE 4. Classification Accuracy 

 

Method      Accuracy(%)     
Raw SRResNet EDSR  LapSRN VDSR SRDenseNet DATFGAN(Ours) 

Alexnet 85.92 86.35 86.48 86.29 87.03 86.29 88.14 

VGG16 85.55 86.26 86.26 85.92 86.66 86.29 88.51 

Inception-v3 87.78 88.53 88.44 88.57 88.74 88.41 89.67 

Resnet101 88.88 89.62 89.70 89.62 90.00 89.62 91.48 

Resnext50 87.77 88.41 88.61 88.82 88.41 88.61 89.63 

Densenet121 88.51 89.25 89.60 89.62 89.25 89.25 92.59 

MobileNet V2 90.74 91.34 91.37 91.37 91.44 91.77 92.73 

ShuffleNet V2 89.63 90.52 90.56 90.89 90.52 90.53 91.41 

 Method  
Alexnet 

Learning rate  
0.0001 

Batch size  
20 

Epochs  
50 

VGG16 0.0001 20 50 
Inception-v3 0.0001 20 65 
Resnet101 0.0005 20 50 
Resnext50 0.0005 20 60 

Densenet121 0.0005 20 50 

MobileNet V2 0.0001  20 60 
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PSNR. DATFGAN does not use averaging, resulting in better visual 
effects, but reducing PSNR compared to other super- resolution 
methods. 

One of the most important techniques in deep learning, 
including CNNs, is transfer learning, which is also as known as 
fine-tuning. In this study, we slightly modified state-of- the-art 
network architectures to avoid image size reduction and 
produce RGB images directly. In future studies, we will conduct 
network training using larger image datasets, such as ImageNet 
[38], and evaluate the resulting classification performance. 

 

 
This research presents a new approach to crop leaf disease 
picture restoration. Our approach incorporates GANs with 
agricultural disease image processing in a way that no one has 

before seen. In order to make deeper structures trainable and 
drastically decrease the number of network parameters, we 
used both residual and dense connections. An additional 
performance improvement was achieved via a dual-attention 
method. Focusing on channels allows you to prioritise those 
that matter and downplay those that don't. By using textures 
as global spatial attention mechanisms during picture 
reconstruction, texture attention may allocate attention 
depending on the texture properties. Our experiments show 
that when compared to state-of-the-art approaches, 
DATFGAN achieves better outcomes in terms of visual quality 
and classification performance. With its foundation in 
topology fusion and excellent attention mechanisms, 
DATFGAN is able to decrease the amount of network 
parameters while simultaneously improving classification 
accuracy, making it very practical for real-world applications. 
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