SEED TREATMENT CHEMICALS AND POLYMER COATING ON SEED LONGEVITY OF COTTON SEED [GOSSYPIUM HIRSUTUM L.]

BHARAMARAJ BADIGER*, S. NARAYANASWAMY AND SHIVAGOUDA PATIL

Department of Seed Science and Technology, Seed Technology Research Unit, National Seed Project, University of Agricultural Sciences, GKVK, Bangalore-560 065, INDIA e-mail: bdgrseed@gmail.com

KEYWORDS

Polykote Synthetic polymer longevity and germination

Received on: 14.06.2015

Accepted on: 18.09.2015

*Corresponding author

ABSTRACT

An experiment was carried out to know the influence of polymers and seed treatment chemicals on longevity of cotton seeds. From the present investigation of the study it could be concluded that Polykote @ 3 ml/kg + Vitavax 200 @ 2ml/kg of seeds and stored in the polythene bag (400 gauge) maintained higher seed quality attributes such as germination (73.67%), vigour index - I (2038), vigour index - II (2156) and lower electrical conductivity (0.259 ms/ppt), after ten months of storage compare to control in cloth bag which noticed germination (60.00%), vigour index -I (1108), vigour index -II (1220) and higher electrical conductivity (0.430 mS/ppt), respectively.

INTRODUCTION

Cotton is one of the important fiber crop, known as king of fiber and in recent times it is called as white gold. Cotton seed loses its viability and vigour rapidly in storage as being poor storer. The linted cotton seed hosts many pathogens and insect pests during storage and reduce the seed quality. According to Basu (1993) storing the seeds after treating with certain invigouration treatment for enhanced storage potential of seeds. The seed invigouration treatments includes any physical, chemical and physiological seed treatments (either wet or dry) with range of chemicals viz., Agrochemicals, fungicides, insecticides, growth regulators, vitamins, antioxidants, halogens etc. In 1973, Delouche stated that rapid loss of viability and vigour in storage leads to poor stand establishment of the crop and low productivity. Hence, storage of seeds after harvest till next sowing season is of prime importance for successful seed production programme and also an essential segment of seed industry.

The seed has to be stored safely to maintain viability and vigour intact. The application of polymer coat provides protection from the stress imposed by ageing, which includes fungal invasion also. The polymer coat is thin simple to apply, diffuses rapidly and nontoxic to the seedlings during germination. It improves plantability and emergence of the seeds. The polymer film may act as physical barrier, which has been reported to reduce the leaching of inhibitors from the seed coverings and may restrict oxygen diffusion to the embryo (Vamangamudi et al. 2003). Polymer coat treated seeds also known for controlling of seed infection from fungus (Rakesh et al., 2013). The seed has to be stored safely so that

the viability and vigour is maintained intact for this present investigation is carried out with application of seed treatment chemicals and polymer seed coating to improve the storage potentiality of cotton seed. taken.

MATERIALS AND METHODS

The seeds of cotton cv. NHH- 44 produced during Kharif 2008 were collected from NSP, UAS, Dharwad. The seeds were cleaned and dried to <8 per cent of moisture and used for the study. The experiment consists of treatments viz., Control (T_a), Polykote @ 3 mL/kg (T_a), Polykote @ 3 mL/kg + Flowable Thiram @ 2.5 mL/kg (T₂), Polykote @ 3 mL/kg + Imidacloprid @ 6 mL/kg (T₂), Polykote @ 3 mL/kg + Flowable thiram @ 2.5 mL/kg + Imidacloprid @ 6 mL/kg (T₁), Polykote @ 3 mL/kg + Vitavax 200 (T₅), Hydroprimedseed (T₆), Hydroprimed + Polykote @ 3 mL/kg + Flowable Thiram @ 2.5 mL/Kg + Imidacloprid @ 6 ml/kg (T₇). After seeds were air dried under shade for 24h to bring back to its original moisture content. Only from each treatment seeds were packed in cloth bag (C1) and polythene bag (C2) and stored under room conditions at NSP, Bangalore for ten months. Observations were taken to know seed quality attributes viz., germination, vigour index –I, vigour index –II and electrical conductivity.

RESULTS AND DISCUSSION

The polymer coated seeds coupled with chemical treatment stored in polythene bag (400 gauge) exhibited superiority in maintaining the seed quality throughout the storage period. Irrespective of the treatments all the seed quality parameters

Table 1: Influence of synthetic polymers, chemical treatments and packaging on germination (%) in cotton hybrid NHH-44 during storage

Storage Period	Storage Period (months) (Sep-09 to Jun-10)								
Treatments	2	4	6	8	10				
T ₀	85.67(67.74)	78.17(62.13)	74.83(59.88)	69.50(56.46)	61.00(51.34)				
T ₁	86.33(68.30)	79.83(63.31)	77.33(61.56)	72.50(58.35)	67.00(54.93)				
Τ,	85.67(67.82)	79.67(63.19)	77.83(61.90)	73.33(58.89)	68.00(55.53)				
T,	85.00(67.21)	80.33(63.66)	77.67(61.78)	73.00(58.67)	68.67(55.96)				
T_{A}	85.33(67.49)	81.33(64.42)	78.67(62.49)	75.83(60.56)	70.67(57.19)				
T_5	88.33(70.04)	84.17(66.54)	81.17(64.28)	77.50(61.68)	72.33(58.25)				
T ₀ T ₁ T ₂ T ₃ T ₄ T ₅ T ₆ T ₇ Mean	83.67(66.16)	78.50(62.37)	74.17(59.43)	69.50(56.46)	62.83(52.43)				
T,	84.50(66.84)	79.33(62.94)	76.83(61.22)	73.67(59.11)	67.50(55.23)				
М́еап	85.56(67.70)	80.17(63.57)	77.31(61.57)	73.10(58.77)	67.25(55.11)				
S.Em ±	0.44	0.41	0.33	0.37	0.41				
CD(0.05P)	1.27	1.17	0.94	1.07	1.19				
C,	84.25(66.63)	79.13(62.82)	76.21(60.81)	72.13(58.13)	65.83(54.24)				
C ₁ C ₂	86.88(68.77)	81.21(64.32)	78.42(62.33)	74.08(59.42)	68.67(55.98)				
Mean	85.56(67.70)	80.17(63.57)	77.31(61.57)	73.10(58.77)	67.25(55.11)				
S.Em <u>+</u>	0.28	0.20	0.16	0.19	0.21				
CD(0.05P)	0.64	0.59	0.47	0.53	0.59				
T_0C_1	85.00(67.19)	77.00(61.33)	73.00(58.67)	68.67(55.94)	60.00(50.75)				
T _o C,	86.33(68.29)	79.33(62.94)	76.67(61.09)	70.33(56.99)	62.00(51.92)				
T,C,	86.00(68.03)	79.00(62.73)	76.00(60.64)	72.00(58.03)	65.00(53.72)				
T,C,	86.67(68.56)	80.67(63.89)	78.67(62.48)	73.00(58.67)	69.00(56.15)				
T,C,	83.00(65.64)	78.00(62.01)	76.67(61.09)	72.67(58.46)	66.67(54.72)				
T,C,	88.33(70.00)	81.33(64.38)	79.00(62.70)	74.00(59.32)	69.33(56.35)				
T,C,	83.67(66.14)	80.33(63.68)	77.67(61.78)	72.67(58.46)	66.00(54.31)				
T,C,	86.33(68.28)	80.33(63.65)	77.67(61.78)	73.33(58.89)	71.33(57.61)				
T,C,	84.00(66.42)	79.00(62.70)	76.67(61.09)	73.67(59.11)	69.67(56.56)				
T,C,	86.67(68.57)	83.67(66.14)	80.67(63.89)	78.00(62.01)	71.67(57.82)				
T¸C¹	87.00(68.85)	83.33(65.89)	79.67(63.18)	75.67(60.43)	71.00(57.40)				
T _r C	89.67(71.22)	85.00(67.19)	82.67(65.38)	79.33(62.94)	73.67(59.11)				
T,C,	82.33(65.13)	78.00(62.01)	74.00(59.32)	69.00(56.16)	62.00(51.94)				
T ₆ C,	85.00(67.19)	79.00(62.73)	74.33(59.54)	70.00(56.77)	63.67(52.92)				
T,C, T,C, T,C, T,C, T,C, T,C, T,C, T,C,	83.00(65.66)	78.33(62.24)	76.00(60.65)	72.67(58.46)	66.33(54.51)				
T,C,	86.00(68.01)	80.33(63.65)	77.67(61.78)	74.67(59.76)	68.67(55.94)				
Mean	85.56(67.70)	80.17(63.57)	77.31(61.57)	73.10(58.77)	67.25(55.11)				
S.Em ±	0.62	0.58	0.46	0.52	0.58				
CD(0.05P)	NS	NS	1.33	NS	NS				

*Initial germination: 93% before treatment; Figures in parentheses are *Arc sine* values; NS: Non Significant

TO	:	Control	T4	:	Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
T1	:	Polykote @ 3 ml/kg of seed	T5	:	Polykote @ 3 ml/kg + Vitavax 200 @ 2g/kg of seed
T2	:	Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg of seed			
T6	:	Hydroprimed			
Т3	:	Polykote @ 3 ml/kg + Imidacloprid @ 6 ml/kg of seed	T <i>7</i>	:	Hydroprimed+ Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
C1	:	Cloth bag	C2	:	Polythene bag

decreased as the storage period advanced. There was significant differerence in germination during storage (Table 1). Seed germination in cloth bag was 84.25 per cent and polythene bag was 86.88 per cent at second month of storage and it was declined to 65.83 per cent in cloth bag and 68.67 per cent in polythene bag at the end of ten month of storage. Among the treatments seeds coated with Polykote @ 3 ml/kg + Vitavax 200 @ 2g/kg treatment which were stored in polythene bag maintained better germination throughout the storage period which noticed (73.67 %). There is significant difference among the treatments, seeds coated with Polykote @ 3 ml/kg + Vitavax 200 @ 2g/kg treatment recorded higher germination 72.33 % at the end of storage as compared to control 61% (without polymer and chemical). Polymer and seed treatment chemicals cover the pores in the seed coat and

prevents the entry of both water and fungal mycelia and provide protection from physical damage similar results were recorded by (Rathinavel and Raja, 2007) in cotton, (Chachalis and Smith, 2001) in Soybean and (Gurung et al., 2014) in passion fruit .Which results in higher respiration of seed germ resulted in rapid deterioration of seeds and decreased germination percent in cloth bag (Meena et al., 1999) in cotton.

The significant difference in the treatments was noticed in vigour index throughout the storage period. Vigour index was also decreased as progress in storage period increases. This decrease in seed quality parameters during storage may be attributed to ageing effects, leading to depletion of stored food reserves and decline in synthetic activity of the embryo apart from death of the seeds due to fungal invasions. The rate of

Table 2: Influence of synthetic polymer, chemical treatments and packaging on seedling vigour index-I and vigour index-II in cotton hybrid NHH-44 during storage

Storage Period		Sep-09 to Jun-1	0)							
Vigour index-I					Vigour index-II					
Treatments	2	4	6	8	10	2	4	6	8	10
T _o	2612	2162	1853	1560	1256	3111	2448	2044	1652	1296
T,	2622	2259	1983	1764	1500	3235	2601	2274	1932	1631
$ \begin{array}{l} T_0 \\ T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \end{array} $	2600	2205	2018	1794	1594	3227	2691	2326	2020	1722
T,	2621	2291	2073	1846	1642	3176	2728	2347	1973	1739
T,	2630	2389	2176	2013	1793	3212	2815	2419	2121	1889
T.	2771	2474	2273	2112	1882	3399	2880	2616	2320	2038
T,	2515	2163	1897	1640	1332	3071	2517	2076	1804	1466
T,	2609	2311	2117	1911	1686	3174	2725	2379	2096	1832
Mean	2623	2282	2049	1830	1586	3200	2676	2310	1990	1702
S.Em <u>+</u>	20.21	15.88	14.27	14.87	15.31	19.92	25.10	18.82	18.80	20.34
CD (0.05P)	58.21	45.76	41.11	42.83	44.11	57.37	72.29	54.21	54.1 <i>7</i>	58.58
C.	2462	2110	1881	1666	1426	3105	2564	2229	1905	1611
C ₁ C ₂	2783	2454	2217	1994	1745	3296	2787	2391	2075	1792
Mean	2623	2282	2049	1830	1586	3200	2676	2310	1990	1702
S.Em <u>+</u>	10.10	7.94	7.13	7.43	7.66	9.96	12.55	9.41	9.40	10.17
CD (0.05P)	29.10	22.88	20.55	21.42	22.05	28.69	36.15	27.11	27.08	29.29
T_0C_1	2476	1989	1684	1380	1108	3093	2343	1925	1586	1220
$T_0^{\circ}C_2^{\circ}$	2748	2335	2022	1740	1403	3128	2554	2163	1719	1372
$T_1^{\circ}C_1^{\circ}$	2488	2059	1761	1572	1301	3161	2561	2183	1836	1535
T ₁ C ₂	2756	2458	2205	1956	1700	3308	2640	2364	2028	1727
T,C,	2393	2033	1861	1654	1454	3064	2586	2318	1984	1660
T,C,	2806	2378	2175	1934	1733	3390	2795	2334	2057	1784
T ₃ C ₁	2477	2161	1929	1722	1434	3043	2628	2272	1856	1586
T,C,	2766	2421	2218	1970	1850	3308	2828	2421	2090	1891
$T_{2}^{2}C_{2}^{'}$ $T_{3}C_{1}$ $T_{3}C_{2}$ $T_{4}C_{1}$	2495	2196	1978	1829	1655	3099	2602	2326	2003	1822
I_4C_2	2765	2582	2374	2197	1931	3325	3028	2512	2239	1955
T_5C_1	2614	2333	2122	1939	1726	3317	2768	2486	2199	1920
T_5C_2 T_6C_1	2929	2614	2425	2285	2038	3481	2992	2746	2441	2156
T_6C_1	2322	1942	1739	1486	1197	2980	2423	2072	1809	1412
T_6C_2	2709	2383	2054	1794	1466	3162	2612	2080	1799	1520
T_7C_1	2432	2162	1973	1747	1534	3084	2599	2250	1965	1736
T_7C_2	2787	2461	2260	2076	1838	3264	2850	2508	2227	1929
Mean	2623	2282	2049	1830	1586	3200	2676	2310	1990	1702
S.Em ±	28.58	22.46	20.18	21.03	21.65	28.17	35.49	26.61	26.59	28.76
CD (0.05P)	NS	64.71	58.13	60.58	62.38	81.14	102.24	76.67	76.60	82.84

*Initial Vigour index-I: 2941 and Vigour index-II : 3648 (before treatment) ; NS: Non Significant

T0	:	Control	T4	:	Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
T1		Polykote @ 3 ml/kg of seed	T5	:	Polykote @ 3 ml/kg + Vitavax 200 @ 2g/kg of seed
T2		Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg of seed			
T6	:	Hydroprimed			
Т3	:	Polykote @ 3 ml/kg + Imidacloprid @ 6 ml/kg of seed	T <i>7</i>	:	Hydroprimed+ Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
C1	:	Cloth bag	C2	:	Polythene bag

reduction in vigour index in polythene bag was lower than that of cloth bag. Vigour index-I and II initially it was 2941 and 3648 respectively before conducting storage, where as vigour index I and II is lower 2462 and 3105 in cloth bag as compared to in polythene bag stored seeds 2783 and 3296 respectively at second month after storage and it was declined to 1426 and 1611 in cloth bag and in polythene bag 1745 and 1792 at end of storage period respectively (Table 2). Seedling vigour index I and II was highest in Polykote @ 3 ml/kg + Vitavax 200 @ 2ml/kg (1882 and 2038, respectively) compared to control (1256 and 1296, respectively) at the end of ten month of storage. Among the treatment combination seeds treated

with Polykote @ 3 mL/kg + Vitavax 200 @ 2ml/kg stored in polythene bag recorded higher vigour index I and II was at the end of storage period (2038 and 2156 respectively). However the lowest vigour index I and II was noticed seed stored in cloth bag which was 1108 and 1220 respectively, The higher vigour index in Polykote @ 3 mL/kg + Vitavax 200 @ 2mL/kg treated seeds stored in polythene bag was due to chemicals and containers effect, which will prevent the deterioration of seed over other treatments. The polymer coating and chemical treatments keep the seed intact, as it acts as binding material. It covers the minor cracks and aberration on the seed coat, thus blocking the fungal invasion. It may also act as a physical

Table 3: Influence of synthetic polymer, chemical treatments and packaging on electrical conductivity (μs/ppt) in cotton hybrid NHH-44 during storage

Electrical conductivity Storage Period (months)							
Treatments	2	4	6	8	10		
T ₀	0.139	0.201	0.249	0.337	0.418		
T,	0.128	0.187	0.236	0.317	0.394		
Τ,	0.124	0.177	0.220	0.271	0.336		
$ \begin{array}{l} T_0 \\ T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \\ T_7 \end{array} $	0.127	0.171	0.224	0.283	0.347		
T,	0.138	0.169	0.210	0.245	0.288		
T.	0.127	0.165	0.199	0.238	0.275		
T,	0.135	0.197	0.238	0.325	0.397		
T,	0.126	0.173	0.207	0.253	0.285		
Mean	0.130	0.180	0.223	0.284	0.342		
S.Em ±	0.001	0.001	0.002	0.003	0.002		
CD (0.05P)	0.004	0.004	0.005	0.009	0.007		
	0.138	0.193	0.238	0.298	0.354		
C ₁ C ₂ Mean	0.122	0.167	0.208	0.270	0.331		
Mean	0.130	0.180	0.223	0.284	0.342		
S.Em ±	0.001	0.001	0.001	0.002	0.001		
CD (0.05P)	0.002	0.002	0.002	0.004	0.003		
	0.150	0.210	0.262	0.355	0.430		
T,C,	0.127	0.192	0.235	0.318	0.407		
$T_{0}C_{1}$ $T_{0}C_{2}$ $T_{1}C_{1}$	0.135	0.199	0.243	0.320	0.404		
T ₁ C ₂	0.120	0.175	0.230	0.314	0.384		
$T_2^{'}C_1^{'}$	0.128	0.189	0.229	0.284	0.341		
T,C,	0.119	0.165	0.211	0.259	0.331		
T,C,	0.133	0.181	0.242	0.295	0.353		
T,C,	0.121	0.161	0.206	0.271	0.342		
T.C.	0.147	0.190	0.233	0.269	0.306		
T,C	0.128	0.149	0.186	0.221	0.269		
T,C,	0.137	0.178	0.216	0.250	0.291		
T,C,	0.117	0.152	0.182	0.225	0.259		
T ₂ C ₂ T ₃ C ₁ T ₃ C ₂ T ₄ C ₂ T ₄ C ₂ T ₅ C ₂ T ₅ C ₄ T ₅ C ₂ T ₆ C ₁ T ₆ C ₂	0.142	0.210	0.253	0.346	0.409		
T,C,	0.128	0.184	0.222	0.303	0.385		
T ₇ C ₁	0.134	0.185	0.225	0.261	0.298		
T_7C_2	0.118	0.160	0.189	0.245	0.273		
Mean	0.130	0.180	0.223	0.284	0.342		
S.Em ±	0.002	0.002	0.002	0.004	0.003		
CD (0.05P)	NS	0.006	0.007	0.013	0.010		
CV(%)	2.36	1.915	1.905	2.662	1.672		

*Initial electrical conductivity:0.105ms/ppt (before treatment); NS: Non Significant

TO	:	Control	T4	:	Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
T1	:	Polykote @ 3 ml/kg of seed	T5	:	Polykote @ 3 ml/kg + Vitavax 200 @ 2g/kg of seed
T2	:	Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg of seed			
T6	:	Hydroprimed			
Т3	:	Polykote @ 3 ml/kg + Imidacloprid @ 6 ml/kg of seed	T <i>7</i>	:	Hydroprimed + Polykote @ 3 ml/kg + Flowable thiram @ 2.5 ml/kg + Imidacloprid @ 6 ml/kg of seed
C1	:	Cloth bag	C2	:	Polythene bag

barrier which reduces leaching of inhibitors from the seed covering and restrict oxygen movement and thus reducing the respiration of embryo thereby reducing the ageing effect on the seed (Vamangamudi, 2003).

The present study also evidently implicates a progressive but rapid increase in EC (Electrical conductivity) of the seed leachate during storage period. The EC was recorded initially 0.105 $\mu s/ppt$ before storage, The seeds packed in cloth bag recorded higher EC (0.354 $\mu s/ppt$) compared to polythene bag stored seeds (0.331 $\mu s/ppt$) at the end of storage, but at the second month of storage was 0.138 $\mu s/ppt$ and 0.122 $\mu s/ppt$ respectively (Table 3). The seeds which were coated with Polykote @ 3 ml/kg + Vitavax 200 treated recorded lower EC

(0.275 μ s/ppt) compared to other treatments and higher EC was recorded control (0.418 μ s/ppt). Among the treatment combination T_5C_2 recorded lowest electric conductivity (0.259 ms/ppt) compared to T_0C_1 (0.430 μ s/ppt) at the end of ten months after storage. This might be due to the incidence of fungi, which causes to loss of membrane integrity in seeds stored without chemical treatment. The observations recorded on the increased leakage from the seeds of natural ageing (Struve, 1996) in cotton are some of the strong evidences to support the hypothesis that membrane damage is found to be the first stage of ageing.

The study could be concluded that seed coating with Polykote @ 3 ml/kg + Vitavax 200 @ 2ml/kg of seed with storage in

polythene bag (400 gauge) is better to maintain seed viability and longevity during cotton seed storage up to ten months.

REFERENCES

Chachalis, D. and Smith, M. L.2001. Hydrophilic polymer application reduces imbibition rate and partially improve germination or emergence of soybean seedlings. *Seed Sci. & Technol.*, **29** (1): 91 – 98.

Delouche, J.C. 1973. Percepts of seed storage (Revised) S.C. Proc. Mississippi State University, pp: 97-122.

Meena, R.A., Rathinavel, R.K., Deshmukh, R.K. and Tuteja, O.P. 1999. Storage potential of tetraploid and diploid cottons under ambient conditions. *Seed Res.* 27(1): 125-127.

Rathinavel, K. and Raja, K. 2007. Effect of polymer coating on viability vigour and longevity of cotton seeds. *J. Indian Soc. Cotton Improv.*: pp. 111-121.

Struve, T.H. and Hopper, W.T. 1996. The effect of polymer film

coating on cotton seed imbibition, EC, germination and emergence. Proceedings of Beltwide Cotton Conference. Nashville.TN. USA. 2: 1167 – 1170.

Vamangamudi, K., Srimathi, P., Natarajan, N. and Bhaskaran, M. 2003. Current scenario of seed coating polymer. *ICAR –short course on seed hardening and pelleting technologies for rainfed garden land ecosystem*. pp: 80-100.

Basu, R.N., 1993, An appraisal of wet and dry physiological seed treatment and their applicability with special reference to tropicals and subtropical countries. *Seed Sci. & Technol.*, **22**: 107-126.

Gurung, N.. Swamy, G. S. K.Sarkar S. K and Ubale. N. B. 2014. Effect of chemicals and growth regulators on germination, vigour and growth of passion fruit (*Passiflora Edulis Sims.*). *The Bioscan 9*(1): 155-157,

Rakesh C. M, Shakuntala, N. M. Vasudevan, S. N., Nagaraj, N M and Patil S. B.2013. The anti-fungal properties of aqueous extracts from psorolea corylifolia linn. seeds in controlling grain smut and seed quality enhancement of sorghum. *The Bioscan.* 8(2): 685-687