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INTRODUCTION

Immune system shows two but interrelated types of response:

acquired and innate immune responses. The acquired im-

mune response evolved in early vertebrates and allow for a

stronger immune response as well as immunological memory.

The innate immune response act as an initial defense mecha-

nism against microbial growth shortly after infection occurs

(Merchant et al., 2003). The innate immune response of rep-

tiles has been addressed in the literature (Koppenheffer, 1987;

Freedberg et al., 2008). Some reports are also available on

seasonal variation in cell-mediated innate immune responses

in reptiles (Munoz and Fuente, 2001). Phagocytosis is also

important constituent of innate immune system and critical

for the survival of organisms. The cell-mediated innate im-

mune responses in reptiles has been addressed in literature,

with reference to phagocytosis and cytotoxic response of

splenic macrophages (Mondal and Rai, 1999a, b, 2001,

2002a, b), mixed leucocyte reaction and lymphocyte prolif-

eration (Farag and El Ridi, 1985, 1986; Munoz et al., 2000;

Cray et al., 2001; Work et al., 2001; Munoz and Fuente,

2003; Burnham et al., 2005; Keller et al., 2005, 2006). There

are a few reports on day night variation in phagocytic activity

in mammals and birds (Barriga et al., 2001; Berger and

Slapnickova, 2003; Hriscu, 2004). With regard to ectother-

mic vertebrates, reports are confined to fishes only (Esteban et

al., 2006; Roy et al., 2008). Respiratory burst function result-

ing in the release of reactive oxygen species (ROS) such as

superoxide anion (O
2

-) from neutrophils is one of the key

mechanisms of the innate immune systems. Nitroblue tetra-

zolium (NBT) is a yellow, water-soluble dye that can be re-

duced by accepting electrons in the presence of free oxygen

radicals to form a blue-black water-insoluble compound

known as formazan (Baehner et al., 1976). Thus, the NBT

reaction indirectly reflects the ROS generating activity in the

cytoplasm of cells. Reptiles represent an important phylogenic

group being ancestor of both birds and mammals. The objec-

tive of the present study was to explore the day night variation

in phagocytosis and oxidative burst activity of leucocytes in

an ophidian model, Natrix piscator.

MATERIALS AND METHODS

Animals

Freshwater snakes, weighing 80-120g, were obtained from a

local supplier who collected these animals in the suburbs of

Varanasi (28º18’N; 83º1’E). Animals were housed in vivarium

(wood and wire net cages; size 50x30x30cm) containing

earthen bowl filled with water. Snakes were fed on small fishes

once a week. Cages were cleaned, and bowl water was

changed next day following feeding. Animals were

acclimatized to the laboratory conditions for two weeks, and

experiments were performed. The guideline of the Committee

for the Purpose of Control and Supervision of Experiment on

Animals (CPCSEA), Ministry of Statistics and Programme

Implementation, Government of India, were followed in

maintenance and sacrifice of animals.

Chemicals

Culture medium (RPMI-1640), L-glutamine, gentamycin, fetal
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Figure 2: Day night variation in NBT reduction in fresh water snake

Natrix piscator
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Figure 1: Day night variation in neutrophil phagocytosis in fresh

water snake Natrix piscator
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bovine serum (FBS), and other chemicals were purchased from

Himedia Laboratories Pvt. Ltd. (India). The culture medium

was supplemented with 1 μL mL-1 gentamycin, 10 μL mL-1 of

200 mM L-glutamine, 10 μL mL-1 anti-anti (Gibco) and 5% FBS

and referred to as complete culture medium.

Experiment

Animals were divided into two groups of four animals each (n

= 4): one group was sacrificed at 12h mid day and other

group at 12h mid night. Animals were weighed, anaesthetized

and blood was collected in a heparinized syringe through

cardiac puncture. Blood was processed for phagocytosis and

NBT assay.

Blood phagocytosis

For phagocytic assay, the yeast cells were used as target cell.

The yeast cell suspension was prepared by mixing 20mg of

commercial baker’s yeast (Saccharomyces cerevisae) in 10mL

of 0.2 M PBS. The suspension was kept at 80ºC for 15min.

The cells were washed three times in PBS and finally

suspended in complete culture medium to get a concentration

of 1x108 cells mL-1. Equal amount (20 μL) of blood and yeast

cell suspension was mixed and incubated for 30 minutes at

room temperature. Smear was prepared on a clean glass slide,

air dried, fixed in methanol, stained with Giemsa, and

examined under oil immersion. For each slide, a total of 100

neutrophils were examined randomly without any

predetermined sequence. The phagocytic index was

determined by calculating the average number of yeast cells

engulfed by single neutrophil. The percent phagocytosis was

calculated by dividing the number of neutrophils showing

phagocytosis by 100.

NBT assay

Peripheral Bood Leucocytes (PBL) were collected from the

buffy coat (the layer of PBLs between the plasma and RBCs)

using a slow spin technique as described by Keller et al. (2005).

The tubes were centrifuged at 500 rpm (42 x g) for 25 min at

8ºC. The PBLs were collected by gently swirling the buffy coat

into the plasma and transferring the cells into a new tube.

Following centrifugation at 1200 rpm for10 min, the plasma

was removed and the cell pellet was gently resuspended in

1mL of culture medium. NBT assay was performed following

the methods of Berger and Slapnickova (2003). Leucocytes

were counted and adjusted to 2x106 cells mL-1 in complete

RPMI. Cell viability was checked through trypan blue exclusion

test, which exceeded 95%. 50 μL of leucocytes (105 cells) was

mixed with 50 μL of RPMI containing NBT (1 mg mL-1) in 96

well culture plate in triplicates. One well with culture medium

without cells served as blank. Plates were then incubated in

CO
2
 atmosphere at 25ºC for 2h, centrifuged at 700 x g, washed

with PBS and fixed in 70% methanol. 20 μL of 0.1% triton X-

100 was mixed in each well. The formazan crystals were

dissolved by mixing 120 μl KOH (2 M) and 140 μL DMSO in

each well. Optical density was measured at 620 nm with the

help of ELISA plate reader (Thermo Multiscan).

Statistical analysis

Data are presented as mean ± SEM. Means were compared,

and statistical difference between means was determined by

Student’s t-test.

RESULTS

Leucocytes obtained from snake showed day night variations

in phagocytic activity. Percent phagocytosis was significantly

(p<0.05) higher at mid night and phagocytic index was

insignificantly higher at mid night (Fig. 1). Superoxide

production, as judged by NBT reduction assay, was found to

be significantly (p < 0.05) higher during night time as

compared to day (Fig. 2).

DISCUSSION

Daily rhythms in immune parameters have been documented

for most species of mammals and birds studied to date. Most

of these investigations, however, have focused on rhythmicity

in the number of circulating immune cells and splenic

lymphocytes (Haus et al., 1983; Nelson et al., 2002; Pelegri

et al., 2003; Oishi et al., 2006); while few studies have

examined changes in functional activity of immune cells.

Diurnal rhythms in human bone marrow were first

demonstrated in the work of Aardal with Laerum (1983), and

Mauer (1965). Leucocytes and its subtypes, in human, vary in

a circadian pattern: some show increase in daytime; while

others, at night (Haus et al., 1983, Suzuki et al., 1997). There

is now considerable evidence that magnitude of the immune
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response varies with time of the day. The present study in

fresh water snake, N. piscator, demonstrates the day night

rhythmicity in leucocyte phagocytosis and superoxide

production. The phagocytosis was higher during dark phase

than light phase. This is in agreement to that in most of the

endothermic vertebrates in which phagocytic activity by

polymorphonuclear granulocytes remained elevated during

the dark phase, though the precise timing of acrophase varies

in different animals, when the hormone melatonin secretion

is high (Hriscu et al., 2002–2003; Hriscu, 2004; Melchart et

al., 1992). Surprisingly, there are other studies in mice in which

the phagocytosis is reported to be high during the light phase,

for example, the maximum engulfment of carbon particles by

reticuloendothelial cells in CBA mice occur during the second

half of the light span (Szabo et al., 1978), while phagocytes

collected from different tissues of C57BL/6 mice showed peak

phagocytic activity in the first half of the light span (Knyszynski

and Fischer, 1981; Hayashi et al., 2007). The inconsistent

results pertaining to the circadian pattern of phagocytic activity

are reported in humans also. The polymorphonuclear cells

in one of the studies were unresponsive to the LD cycle

(Bongrand et al., 1988), while the same cells exhibited diurnal

periodicity with peak phagocytosis at midnight in the other

study (Melchart et al., 1992). In ectothermic vertebrates, the

knowledge is rudimentary and confined to reports in which

diurnal rhythmicity of humoral innate immune functions is

described in fishes, gilthead seabream, and sea bass (Esteban

et al., 2006). The peak complement activity in both fishes is

reported during the light phase. Immune responses seem

dependent on species, strain of animals, and type of immune

cells and their specific functions. Neutrophil phagocytosis

and oxidative burst activity in reptiles were studied by Froesce

et al. (2005). Other work related to reptiles is confined to the

study of effect of sex steroids on splenic macrophage

phagocytic activity (Mondal and Rai, 1999 a, b, 2002a, b).

The innate immune activity of blood cells attains maximal

value during day time. In analyzing the influence exerted by

the light regimen upon innate immune functions of blood

leucocyte, two distinct aspects have to be considered: the

circadian structure of the rhythms and the level of the assessed

functions. There are several indirect and also direct indicators

that melatonin, secreted exclusively at night, would play a

role in the immune function. In vitro studies employing

pharmacological doses of melatonin (5-100μM) revealed a

dose-dependent activation of phagocytic function (Rodriguez

et al., 1999). However, such doses are far above the

physiologically available range. We may speak, more

plausibly, about role of melatonin on innate immune response

of N. piscator after further experimentation involving in vitro

and in vivo melatonin administration and accessing immune

parameters. In summary, these data indicate a clear cut

variation in innate immune function of blood leucocytes in

N. piscator. The findings of this study may in part explain the

variations by demonstrating changes in innate immune activity

of leucocytes to encounter and process antigen.
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