A GENETIC MODEL OF INHERITANCE OF RESISTANCE TO LATE LEAFSPOT IN F₂ GENERATION OF GROUNDNUT (ARACHIS HYPOGAEA L.)

SAPAM RAJESH KUMAR*, M. REDDI SEKHAR†, SATISH KUMAR M. VERMA1, SANJENBAM DAYANANDA SINGH³ AND SUVENDHU S. DUTTA1
1School of Crop Improvement, CPGS, CAU, Umiam, Meghalaya - 793 103, INDIA
3School of Natural Resources Management
2Department of Genetics and Plant Breeding, S.V. Agricultural College, Tirupati - 517 502, A.P., INDIA
e-mail: rajinspire14487@gmail.com

INTRODUCTION

Groundnut (Arachis hypogaea L.) is one of the main oilseed and food legume crop in India. The low productivity of the crop in India is ascribed to many biotic and abiotic stresses in the cultivation of the crop. Among biotic stresses insects pests and diseases are major factors. The treatments of metaflumizone (16.71%) and lufenuron (17.51%) proved inferior in checking the H. armigera infestation on groundnut crop (Gadhiya et al., 2014). Late leafspot can cause yield losses up to 80 per cent (Grichar et al., 1998). Spraying of Carbendazim + Mancozeb (0.25%) followed by its lower dosage (0.2%) and hexaconazole (0.1%) was found significantly superior in the management of late leafspot and rust of groundnut (Sunkad, 2012). Fungicide application is an effective method to control the disease, but the production cost would be increased by 10% (Coffelt and Porter, 1986). Sources of resistance against them have been identified in some genotypes of cultivated groundnuts. Transfer of resistance in cultivated varieties is thus the cheapest method of disease control as there won’t be any need of extra inputs to the farmer. Thus, it is necessary to ascertain the pattern of inheritance of this disease for effective transfer of resistance into cultivated varieties. Genetic studies on LLS and rust resistance suggest that resistance is naturally complex and polygenic and probably governed by several recessive genes (Green and Wynne, 1986. Motagi, 2001. Dwivedi et al., 2002).

Jogloy et al. (1987) conducted an experiment to identify the inheritance of late leafspot resistance and agronomic traits in groundnut based on 20 breeding populations in the F₂ generations. Study on the inheritance of late leafspot on groundnut was also performed by earlier workers (Montagi et al., 2000. Nevill, 1980). The present study was conducted to understand the mode of inheritance of resistance to LLS in F₂ generation of 15 crosses.

MATERIALS AND METHODS

The experimental material comprising of 15 F₂ crossed populations viz., TPT-4 × GPBD-4, TPT-4 × ICG-13919, TPT-4 × ICG-15234, TCGS-888 × GPBD-4, TCGS-888 × ICG-13919, TCGS-888 × ICG-15234, TCGS-913 × GPBD-4, TCGS-913 × ICG-13919, TCGS-913 × ICG-15234, ICGV91114 × GPBD-4, ICGV91114 × ICG-13919, ICGV91114 × ICG-15234, TG-47 × GPBD-4, TG-47 × ICG-13919 and TG-47 × ICG-15234 were studied in unreplicated design during Kharif, 2012 at S.V. Agricultural College Farm, Tirupati. Genotypes TPT-4, TCGS-888, TCGS-913, ICGV91114 and TG-47 are good performing genotypes based on yield but are susceptible to LLS disease. While, genotypes GPBD-4, ICG-13919 and ICG-15234 are poor performer but have considerable resistance to LLS disease. F₂ progenies of 15 crosses with a population size of 90 plants each were sown. Disease severity for LLS was estimated on single plant
basis and scoring was done according to 1-9 point field scale (Subramanyam et al., 1982). Plants with lower disease incidence with 1 to 3 LLS score were taken as resistant and 4 to 9 as susceptible (Fig 1). The data were put through chi-square test to determine the goodness of fit of observed ratios (Howell, 2011). It has been reported that the best strategy for obtaining LLS resistant genotypes is selection of the disease score trait in initial inbreeding generations, followed by selection in the following generations with higher inbreeding levels in other crosses (Wambi, 2014).

RESULTS AND DISCUSSION

The F2 plants were susceptible to LLS in all the crosses showing that susceptibility is dominant over resistance in these crosses. The F2 segregation had a good fit to a phenotypic ratio of 15 susceptible : 1 resistance plants in all the crosses. The proposed genotypic constitution of the F2 segregation ratios are presented in the Table 1.

From these results it is clear that resistance to LLS is governed by duplicate recessive genes wherein susceptibility being dominant to resistance. Five pairs of duplicate recessive genes appear to be involved in LLS resistance. Resistance to LLS is reported to be controlled by a combination of both, nuclear and maternal gene effects. And among nuclear gene effects, additive effects regulate most of the variation (Pasupuleti et al., 2013).

The female parents viz., TPT-4, TCGS-888, TCGS-913, ICGV91114 and TGB-47 are proposed to possess all genes in dominant condition Lr1Lr1 Lr2Lr2 Lr3Lr3 Lr4Lr4 Lr5Lr5, while the male parents GPBD-4, ICG-13919 and ICG-15234 have one pair of gene in recessive condition lr1lr1 lr2lr2 lr3lr3 lr4lr4 lr5lr5. These findings were in accordance with the earlier report (Vasanithi et al., 1997), wherein they proposed that resistance is controlled by five pairs of genes in female parent, three pairs of genes were involved to resistance in late leafspot in male parent. Genes at three of four loci controlled the leaf spot resistance based on studies in F2 of a cross between Robust 33-1 and Krapovickas-16 (Nevill, 1980). Later on a genetic system was proposed involving five loci from his studies on

Table 1: Inheritance of resistance to late leafspot in F2 population of 15 crosses of groundnut.

<table>
<thead>
<tr>
<th>Sl. #</th>
<th>F2 population</th>
<th>Observed value</th>
<th>Expected ratios</th>
<th>Expected value</th>
<th>Chi-square</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TPT-4 x GPBD-4</td>
<td>80 10</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.23</td>
<td>3.39 3.62</td>
</tr>
<tr>
<td>2</td>
<td>TPT-4 x ICG-13919</td>
<td>86 4</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.03</td>
<td>0.47 0.50</td>
</tr>
<tr>
<td>3</td>
<td>TPT-4 x ICG-15234</td>
<td>81 9</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.14</td>
<td>2.02 2.16</td>
</tr>
<tr>
<td>4</td>
<td>TCGS-888 x GPBD-4</td>
<td>82 8</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.07</td>
<td>1.00 1.07</td>
</tr>
<tr>
<td>5</td>
<td>TCGS-888 x ICG-13919</td>
<td>85 5</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.00</td>
<td>0.07 0.07</td>
</tr>
<tr>
<td>6</td>
<td>TCGS-888 x ICG-15234</td>
<td>81 9</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.14</td>
<td>2.02 2.16</td>
</tr>
<tr>
<td>7</td>
<td>TCGS-913 x GPBD-4</td>
<td>80 10</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.23</td>
<td>3.39 3.62</td>
</tr>
<tr>
<td>8</td>
<td>TCGS-913 x ICG-13919</td>
<td>88 2</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.15</td>
<td>2.34 2.49</td>
</tr>
<tr>
<td>9</td>
<td>TCGS-913 x ICG-15234</td>
<td>84 6</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.00</td>
<td>0.02 0.02</td>
</tr>
<tr>
<td>10</td>
<td>ICGV-91114 x GPBD-4</td>
<td>80 10</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.23</td>
<td>3.39 3.62</td>
</tr>
<tr>
<td>11</td>
<td>ICGV-91114 x ICG-1391986</td>
<td>84 5</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.03</td>
<td>0.47 0.50</td>
</tr>
<tr>
<td>12</td>
<td>ICGV-91114 x ICG-15234</td>
<td>85 5</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.00</td>
<td>0.07 0.07</td>
</tr>
<tr>
<td>13</td>
<td>TG47 x GPBD-4</td>
<td>80 10</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.23</td>
<td>3.39 3.62</td>
</tr>
<tr>
<td>14</td>
<td>TG47 x ICG-13919</td>
<td>81 9</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.14</td>
<td>2.02 2.16</td>
</tr>
<tr>
<td>15</td>
<td>TG47 x ICG-15234</td>
<td>82 8</td>
<td>15 : 1</td>
<td>84.4 5.63</td>
<td>0.07</td>
<td>1.00 1.07</td>
</tr>
</tbody>
</table>

Chi square table value for 1 df = 3.84 at 5 % level. NS= number of susceptible plants; NR= Number of resistant plant

Figure 1: The modified 9-point scale for field evaluation of late leaf spot

five F2 populations from crosses between three resistant lines in which the susceptible parents were used as females (Nevill, 1982). Resistant material is proposed to be homozygous recessive at loci 1, 2, 3 and 4 while susceptibility in Robust 33-1 is homozygous recessive at loci 3, 4 and 5. It was also concluded that susceptible TMV2 has no resistance genes. It
is to conclude that the resistance in the three testers is under the influence of duplicate recessive genes needs to be further confirmed by test cross procedure for further utilization in resistance breeding programme of development LLS resistant genotypes. The F\textsubscript{2} plants were susceptible to LLS in all the crosses showing that susceptibility is dominant over resistance in these crosses. The F\textsubscript{2} generation of all the crosses also showed susceptibility reaction. It was earlier reported that the F\textsubscript{2} generation of all the crosses also showed susceptible reaction (Srivalli, 2012). Resistance to LLS disease is governed by two to three duplicate recessive genes.

REFERENCES

